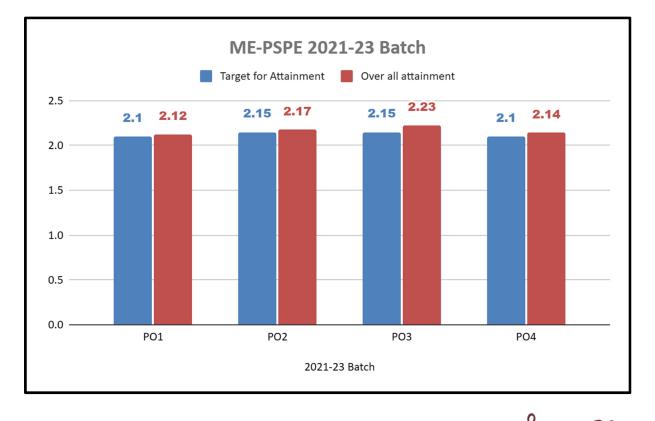


ME-PSPE							
		2021-23 Batch	PO Direct Attainment				
S.	Course						
No	Туре	Subject & Code	PO1	PO2	PO3	PO4	
1	Core	Real Time Applications for Power Systems- 20EE C101		1.64	2.05	1.64	
2	Core	Power Electronic Converters- 20EEC102	2.14	2.49	2.14	2.67	
3	PSE-I	Power Quality - 20EE E110	1.51	1.78	1.78	1.92	
4	PSE-II	Artificial Intelligence Techniques for Power Systems - 20EEE108	2.37	2.2	2.37	2.2	
5	SC	Research Methodology and IPR - 20MEC103	2.63	2.28	2.11	2.28	
6	AC-I	English for Research Paper Writing - 20EGA 101	1.96	1.96	1.8	1.8	
7	Core	Power Systems Lab - 20EEC103	1.56	1.68	1.43	1.43	
8	Core	Power Electronics Simulation Lab - 20EEC104	1.49	1.49	1.86	1.24	
9	Core	Power System Dynamics- 20EEC105		2	2.5	2	
10	Core	Advanced Power Electronic Circuits - 20EEC106		1.96	2.45	1.96	
11	PSE-III	Renewable Energy System- 20EEE107		1.54	1.92	1.54	
12	PSE-IV	Energy Auditing & Management-20EEE113		2.34	2.5	2.34	
13	AC-II	Disaster Mitigation and Management - 20CEA101		1.62	1.62	1.89	
14	Core	Power Electronics Lab - 20EEC107	2.59	2.07	2.07	2.07	
15	Core	Power Systems Simulation Lab - 20EEC108	1.97	1.97	2.46	2.46	
16	Core	Mini Project with Seminar - 20EEC109	2.37	2.76	2.37	2.37	
17	PSE-V	Electric and Hybrid Vehicles - 20EEE116		1.65	1.52	1.52	
18	OE	Introduction to Optimization Techniques - 2.3 20MEO102		2.55	2.55	2.55	
19	Core	Industrial Project/Dissertation Phase 1- 20EEC110	1.97	2.13	2.13	1.97	
20	Core	Industrial Project/Dissertation Phase 2- 20EEC111	2.96	2.96	2.96	2.96	
		Direct Attainment (DA) Average	2.00	2.05	2.13	2.04	

HEAD Dept. of EEE, CBIT (A) M. M. Batasubbareddy Gandipet, Hyderabad - 75 HOD/EEE, CBIT


Indirect Attainment (IA)

2021-23 Batch	PO1	PO2	PO3	PO4
Program Exit Survey	2.5	2.83	2.17	2.67
Alumni Survey	2.63	2.52	2.62	2.55
Parent Feedback	2.67	2.5	2.67	2.5
Employers Feedback	2.67	2.75	3	2.5
Indirect Attainment (IA) Average	2.62	2.65	2.61	2.55

Overall attainment

Direct Attainment (DA)	2.00	2.05	2.13	2.04
Indirect Attainment (IA)	2.62	2.65	2.61	2.55
Overall attainment (0.8*DA+0.2*IA)	2.12	2.17	2.23	2.14

2021-23 Batch	PO1	PO2	PO3	PO4
Target for				
Attainment	2.1	2.15	2.15	2.1
Overall attainment	2.12	2.17	2.23	2.14

 \sim m Dr. M. Balasubbareddy HERDEE, CBIT Dept. of EEE, CBIT (A) Gandipet, Hyderabad - 75

Action Ta	ken		
POs	Target	Attainment	Observations
	value	value	Observations
	(%)		
PO1: <i>A</i>	An ability to	independently carr	ry out research /investigation and development work to solve
practio	al problems		-
PO1	2.1(70%)	2.12	Observation 1: The set target is achieved
After d	iscussing this	in the CEG, PAQIC	and DAB meetings, it is decided to increase the target value by
5%. To	reach the ne	w target value the fol	llowing actions are planned.
Action 1:	. Encouraging	g more student partio	cipation in research projects can lead to benefits such as patent
publ	ications, copy	rights and collabora	tive publications with faculty.
Action 2:	. Encouraged	more students to pa	articipate in international conferences and Research Days events
Action 3:	. Encouraged	students involved in	the department funding research projects and consultancy
proje	ects.		
PO2: A	n ability to w	rite and present a s	ubstantial technical report/document
PO2	2.15	2.17	Observation 1: The set target is achieved.
	(71.67%)		Observation 2: Courses contributing to low scores are
			• Power Electronics Simulation Lab - 20EEC104,
			 Electric and Hybrid Vehicles - 20EEE116
After d	iscussing this	in the CEG PAQIC ar	DAB meetings, it is decided to increase the target value by 5%. To
reach th	nis target value	e the following actions	s are planned.
Action	1:. The syllab	us for the power quali	ty course will be amended in the subsequent curriculum revision. A
few ana	lytical topics	have been introduced	in the revised syllabus.
Action	2:. The studen	its are encouraged to p	prepare detailed technical reports about their mini-projects. A
departn	nent review co	ommittee has been ask	ed to conduct reviews to monitor the progress of the technical report
prepara	tions.		
Action	3:. Students an	re instructed to submit	t technical reports as part of their Electric and Hybrid Vehicles and
-	system dynam		
Action	4:. Departmen	it is decided to conduc	ct short term course related to Electric and Hybrid Vehicles
PO3: 9	students sho	ould be able to de	emonstrate a degree of mastery over the area as per the
special	ization of the	e program. The mas	stery should be at a level higher than the requirements in the
approp	oriate bachelo	or program	
PO3	2.15	2.23	Observation 1: The set target is achieved.
	(71.67%)		Observation 2: Courses contributing to low scores are
			Power Quality- 20EE E110
			Power Systems Lab - 20EEC103
			Renewable Energy System- 20EEE107
			Renewable Energy System- 20EEE107

HEAD Dept. of EEE, CBIT (A) Dr. M. Batasubbareddy Gandipet, Hyderabad - 75 HOD/EEE, CBIT After discussing this in the CEG PAQIC and DAB meetings, it is decided to increase the target value by 5%. To reach this target value the following actions are planned.

Action 1:. Encourage students to participate in Project exhibitions such as Research Day events and conferences related to power quality.

Action 2:. To give assignments which address higher Blooms Taxonomy levels

Action 3:. In core courses, introduce course end projects/seminars along with assignments as part of CIE, which will increase students' ability to solve complex engineering problems

Action 4:. To extend lab courses beyond hours to prepare power point presentations.

Action 5:. To encourage industry internship as a part of the beyond curriculum for enhanced learning and better exposure to the latest technological trends.

PO4: The students will be able to analyze, design and develop new control strategies in the areas of Power Systems and Power Electronics suitable for Industry requirements

PO4	2.10	2.14	Observation 1: The set target is achieved.		
	(70%)		Observation 2: Courses contributing to low scores are		
			Real Time Applications for Power Systems-20EE C101		
			Power Systems Lab - 20EEC103		
			Power Electronics Simulation Lab - 20EEC104		
			Electric and Hybrid Vehicles - 20EEE116		

After discussing this in the CEG PAQIC and DAB meetings, it has been decided to increase the target value by 5%. To reach this target value the following actions are planned.

Action 1:. Introduce high-end experiments in lab courses so that students can learn to solve open-ended problems

Action 2:. Learning Management Systems (LMS) can provide lab experiment demonstration videos to help students better understand the concept and demonstrate well in subsequent lab classes

Action 3:. A proposal was made to include course end projects along with assignments as part of Continuous internal evaluation (CIE) in core engineering lab courses.

Action 4:. To give assignments which address higher Bloom's Taxonomy levels.

Action 5:. In core courses, introduce course-end projects/seminars along with assignments as part of Continuous Internal Evaluation (CIE), which will increase students' ability to solve complex engineering problems.

Action 6:. To encourage industry internships as a part of the Beyond curriculum for enhanced learning and better exposure to the latest technological trends

Dr. M. Batasubbareddy HEADD/EEE, CBIT Dept. of EEE, CBIT (A) Gandipet, Hyderabad - 75