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Abstract: Forecasting of sediment load (SL) is essential for reservoir operations, design of water
resource structures, risk management, water resource planning and for preventing natural disasters
in the river basin systems. Direct measurement of SL is difficult, labour intensive, and expensive.
The development of an accurate and reliable model for forecasting the SL is required. Sediment
transport is highly non-linear and is influenced by a variety of factors. Forecasting of the SL using
various conventional methods is not highly accurate because of the association of various complex
phenomena. In this study, major key factors such as rock type (RT), relief (R), rainfall (RF), water
discharge (WD), temperature (T), catchment area (CA), and SL are recognized in developing the
one-step-ahead SL forecasting model in the Mahanadi River (MR), which is among India’s largest
rivers. Artificial neural networks (ANN) in conjunction with multi-objective genetic algorithm
(ANN-MOGA)-based forecasting models were developed for forecasting the SL in the MR. The
ANN-MOGA model was employed to optimize the two competing objective functions (bias and error
variance) with simultaneous optimization of all associated ANN parameters. The performances of
the proposed novel model were finally compared to other existing methods to verify the forecasting
capability of the model. The ANN-MOGA model improved the performance by 12.81% and 10.19%
compared to traditional AR and MAR regression models, respectively. The results suggested that
hybrid ANN-MOGA models outperform traditional autoregressive and multivariate autoregressive
forecasting models. Overall, hybrid ANN-MOGA intelligent techniques are recommended for the
forecasting of SL in rivers because of their relatively better performance as compared to other existing
models and simplicity of application.

Keywords: multi-objective-based genetic algorithm; water discharge; artificial neural network;
sediment load; Mahanadi River

1. Introduction

Hydrology deals with the efficient utilization of water resources and their management
through the use of hydrological forecasting. Forecasting sediment load (SL) is an important
concern in water resource management, and it is essential to know information about
reservoir operations, water resource planning, flooding, water pollution control, reservoir
design in rivers, and risk management as well as for preventing natural disasters [1,2].
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Moreover, SL forecasts are required for decision making and policy formulation in a
variety of sectors such as hydropower, flood control, reservoir sedimentation, and reservoir
operations [3]. Knowledge of the amount of SL in a river at a particular time can lead
to better knowledge of flood potential and consequently help control over-bane flooding.
The amount of accumulated sediment in a reservoir is a crucial factor in determining the
reservoir’s service life [4]. As a result, it is becoming increasingly important to measure
SL, but it is challenging due to the complexity and non-linearity of the interactions of the
various controlling factors with SL.

Jansson [5] demonstrated the effect of river basin features such as geology, storage
capacity, soil, and relief (R) on SL. Syvitski et al. [6] revealed that long-term sediment
discharge is associated with basin area and basin R, which was employed to examine
the effects of climate change globally on the flux of sediment of the world’s rivers. The
SL in the river is caused by the physical as well as chemical weathering of the soil
and rock within the basin. The catchment area (CA) affects SL due to variations in the
properties of the catchment such as the capacity of storage and gradient [7]. In most of the
world’s major rivers, a good non-linear association between SL and water discharge (WD)
has been found [8,9]. River sediment transportation and generation are significantly
influenced by climatic variables such as temperature (T) and rainfall (RF) [10]. To design
the numerous SL forecasting models based on prior research, temporal data such as
WD, RF, SL, and T, as well as spatial data such as rock type (RT), R, and CA were taken
into consideration.

The data-driven and physically based models are used for forecasting water re-
sources [11]. The physically based models require a lot of data and use complicated
mathematical equations to incorporate the physical process. Traditional time series re-
gression models such as Autoregressive (AR), Autoregressive Moving Averages (ARMA),
and Autoregressive Integrated Moving Averages (ARIMA) have been extensively used
for hydrological time series forecasting [12]. These models have a lot of required input
parameters, and most traditional modeling techniques suppose the data are linear and
stationary, which makes them incapable of handling non-stationary and non-linearity pro-
cesses associated with hydrology [13]. There are various non-linear forecasting methods
that are also used for forecasting SL but those are also not capable of forecasting the SL
accurately and efficiently [13]. Artificial intelligence (AI) data-driven methods have shown
promise in modeling and forecasting non-stationary and non-linear processes in water
resources, as well as in dealing with huge amounts of dynamicity and noise hidden in
datasets. The drawbacks of linear AR, ARMA, and ARIMA and non-linear autoregressive
networks with exogenous inputs forecasting models of SL can be overcome by using an
AI-based non-linear system [13,14]. Long- and short-term forecasts are critical in reservoir
operational processes, which are typically planned every month. Many researchers devel-
oped AI-based SL forecasting models using various controlling factors based on monthly
data [15–17].

The goal of this research is not to describe the superiority of one technique over others,
but rather to demonstrate that different modeling parameters must be chosen judiciously
to generate a generalized, accurate, and reliable model. The ANN is chosen as a non-
linear approach amongst AI techniques because it is currently among the most popular
known AI techniques. The ANN works on the principle of the biological brain and the
nervous system that goes along with it. Through proper learning, the ANN is capable
of identifying the complex non-linear or linear relationship between outputs and inputs
data without detailed knowledge of the character of the internal structure of physical
processes. The ANN can establish non-linear links among outputs and inputs and makes
them flexible and useful techniques for modeling the phenomena of hydrology [18]. It
is useful for modeling when the physical presence of a process is unsure, there is no
mathematical form for a description of the process, and reasonable experimental data are
available [18,19]. The ANN is widely used in hydrology for forecasting the RF, runoff,
flood, river discharge, and sediment yield modeling, which provide better results than
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the traditional regression-based forecasting models [14,20–22]. Nevertheless, the ANN
models possess some drawbacks such as overfitting and underfitting and local minima
problems due to inaccurately choosing the ANN model’s parameters (hidden node size,
network topologies, number of hidden layers, nodes in hidden layers, initial weights, etc.)
using greed search or trial-and-error approaches [23,24]. These ANN parameter selection
approaches require a huge amount of computing time to calculate the parameter value
and do not guarantee to provide an optimum solution [24]. It is possible to implement the
genetic algorithm (GA) to solve the issues with ANN. The GA algorithm is a population-
based global optimization algorithm that is based on Darwin’s theory of evolution and is
used to find the best parameters for ANN models. It generates diversity in a population
of individuals (chromosomes) by employing various genetic operators such as mutation,
selection, and crossover, and then provides the best solutions. Nowadays, the GA is
among the most popular algorithms for global search optimization which is hybridized
with ANN to overcome ANN’s drawbacks [24,25]. The concurrent optimization of related
parameters in ANN models using GA has been used to overcome the shortcomings of
trial-and-error procedures as shown by a variety of applications of AI models. Numerous
studies demonstrate that this strategy not only reduces the amount of computation required
but also yields better results [26–28].

The ANN model parameters are optimized using GA by optimizing a single objective,
namely Mean Square Error (MSE), as a criterion for the evaluation of performance, which
is found in various studies [29,30]. Furthermore, the performance of feed-forward back-
propagation ANN is also determined by achieving the lowest possible MSE [31]. The
drawbacks of using a single objective (MSE) for the optimization of parameters of ANN
have been well documented in past research [31,32]. The MSE is a summation of error
variance and squared mean error (bias). MSE minimization does not guarantee that both
error variance and bias are minimized. There is a conflict between bias (mean error)
and variance, both of which affect ANN performance (MSE) [32]. In influencing MSE of
estimation or forecasting, bias and variance contradict each other, resulting in significant
uncertainty in evaluation. If one of them is reduced, then the other is increased [33]. Thus,
the model selection issue can be viewed as a multi-objective optimization issue. As a result,
minimizing both components is critical for attending generalization to avoid overfitting
or underfitting with greater accuracy. Underfitting is caused by bias, whereas overfitting
is caused by variance, which limits the model’s generalization ability and contributes
to its poor performance [31]. The optimization and compromise of bias and variance
multi-objectives result in a reliable and accurate model [34,35]. The GA is a well-suited
population-based search method for problems involving multiple objectives [19,36]. The
Non-Dominated Sorting GA (NSGA), Controlled Elitist GA (CEGA), and Elitist Non-
Dominated Sorting GA (NSGA-II) are more familiar with GA-based multi-objective
algorithms [37]. Controlled Elitist Gas are more capable of maintaining population
diversity for getting to the best Pareto front by controlling the number of elites than
NSGA-II and NSGA [35]. Therefore, the Controlled Elitist MOGA-based ANN model has
been used to optimize these two contradicting responses (variance and bias). Recently,
many works of literature are available in various fields for prediction and forecasting
using multi-objective optimization for ANN and it was found that the system’s accuracy
could be increased using this hybrid approach [38–40]. Rosales-Pérez [33] applied
multi-objective GA for the optimization of AI models such as Support Vector Machine
(SVM) parameters by optimizing bias and variance. Recently, there are few studies that
have been conducted on the multi-objective optimization-based model to estimate the
sediment load or suspended sediment concentration [41,42].

In this study, forecasting is a term that is used when inputs are past monthly time
series of temporal data such as Q, RF, and T, as well as spatial data such as RT, R, and
CA, and output data are the SL. Thus, this paper deals with the forecasting of the SL
using the past observed SL data and other observed variables (RF, WD, and T) with spatial
data (RT, CA, and R). This study was conducted in the MR system. Various researchers
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have used monthly one-step-ahead forecasting studies in hydrology [43–45]. In this study,
multi-objective genetic-based ANN forecasting models are developed for one-step-ahead of
forecasting the SL in the MR basin with optimization of all ANN parameters (hidden layer
neurons, combination coefficient, transfer function, inputs, bias weights, and connection
weights) simultaneously.

Flood forecasting in the MR is studied by Kant et al. [46] with the use of a multi-
objective evolutionary Neural Network (NN) and bootstrap NN. As per the author’s
knowledge, no researcher has yet attempted to develop a fully automatic, highly general-
ized, globally single hybrid AI-based forecasting model. In this study, a fully automated
parameter tuning and highly generalized AI forecasting model is developed for forecasting
of SL in the Mahanadi River, which reduced the need for human intervention. The pro-
posed model would replace the use of multiple models to predict the SL, which stands
for suspended sediment load. This single model was applied at each gauging station to
forecast the SL in the MR Basin. In this study, a single hybrid ANN-MOGA model was
developed for effectively forecasting the SL at individual stations in the MR using a huge
number of combinations of temporal (SL, T, RF, and WD) and spatial (RT, CA and R) data of
11 gauge stations. All parameters for the ANN model were optimized concurrently using
the multi-objective GA, which included bias and variance objectives. These approaches d
not only improve the model’s performance, but also significantly reduce computational
time by eliminating grid searches and trial-and-error exercises. The forecasting capability
of hybrid models was tested by comparing their performances to traditional Multivariate
Autoregressive (MAR) and Autoregressive (AR) methods. It was revealed that the best
accuracy was provided by the multi-objective GA-based ANN model with more gener-
alization and it is the most suitable substituent among other comparative methods for
forecasting the SL. If SL measurement is not possible, then approaches for multi-objective
GA-based ANN modeling can be recommended for forecasting SL due to their ease of
implementation and relatively better performance than other existing methods.

2. Study Area

To make the SL forecast, the MR basin was chosen. Flowing to the east, this river is a
major waterway in the Indian peninsula (Figure 1). It is the fourth largest river in India and
drains an area of 141,589 km2 or approximately 4.3% of India’s total land area [46]. Odisha
receives 53% of the river’s basin area, while Chhattisgarh receives 46% and Maharashtra,
Madhya Pradesh, and Jharkhand share the remaining 1% [46]. Until it enters the Bay of
Bengal, the river flows for a total of 851 km. Thr MR was located between 19◦20′ and 23◦35′

north, and 80◦30′ and 86◦50′ east. The MR contains the Hirakud dam which is the world’s
largest earthen dam. In terms of current sediment load, the MR is second among Indian
peninsular rivers. Figure 1 shows the MR basin elevation map and the locations of all
11 hydro-climatological sites. The average annual RF was between 1200 and 1400 mm [47].
Approximately 90% of the yearly RF that the MR basin receives occurs during the monsoons.
The MR basin has a dispersed pattern of RF strength. In the MR basin, the warmest months
are April and May, with summer temperatures of 39 to 45 ◦C, and the coldest months are
December and January, with winter temperatures of 4 to 12 ◦C [47]. The two largest bodies
of water in the MR are Lake Chilka and the Hirakud Dam.
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Figure 1. The elevation map of the Mahanadi River basin with the geographical location of 11 gauging
stations [48].

3. Methodology and Data

The preliminary processing includes data normalization that was proposed before
developing the models. To maintain uniqueness while developing a model, data normal-
ization is used to remove the ranges between the datasets. It revealed convergence and fast
processing throughout training and minimized forecasting errors [49].

Data standardization is another name for the process of normalizing numerical data,
which results in much more highly accurate network training. The range of all variables
is fixed at 0 to 1 by the normalization process which is described briefly in different
literature [24,48].

Data normalization’s primary goal is to remove the various ranges and dimensions of
the variables included in the dataset. The normalization process of the data in the range of
a and b is performed using Equation (1):

Cnorm = a +
Ci − Cmin

Cmax − Cmin
× (b− a) (1)

where Ci is the ith actual value, Cnorm is the normalized value of Ci, Cmax is the highest
value, and Cmin is the lowest value of the dataset. In this case, “a” represents the lowest
value, and “b” represents the highest value of normalized data.

The used data consist of monthly RF, T, WD, and SL during the years 1990–2010 and
spatial variables such as R, CA, and RT of eleven gauging stations in the MR for developing
the proposed models. Figure 1 depicts the locations of all these stations. The dataset from
the individual station is partitioned: training data (70%) are used to develop the models;
validation data (15%) are used to avoid model overfitting, while testing data (15%) are used
to evaluate the model’s performance in a testing phase. Data from tests are regarded as
“unseen” and “not used” in the process of modeling. Single testing, training, and validation
for the MR basin were eventually produced by combining the data from all 11 stations. In
this study, the forecasting of SL is performed using an ANN with a Multi-Layer perceptron
(MLP) feed-forward using a Levenberg–Marquardt (LM) backpropagation algorithm. A
wide variety of weight optimization strategies can be utilized during the training process
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of the MLP-based ANN; however, the LM training algorithm trains more quickly than
the gradient descent training algorithm and achieves convergence more quickly [50]. The
weight updating rule of ANN is presented as [24,50]:

Wk+1 = Wk −
(

JT J
)
+ µI)−1 JTe (2)

in which J is a Jacobian matrix, e is an error matrix, I represents an identity matrix, W
is the weight of the ANN, and µ represents the combinational coefficient of LM, which
plays an important role in the learning process of LM in an ANN. The flow chart of the
ANN-MOGA method that has been proposed is shown in Figure 2.
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Numerous artificial intelligence models have been successfully applied by various
researchers for the prediction and forecasting in water resources [51–55]. The details
description of MLP and LM training algorithms of ANN are discussed by various re-
searchers [48,56]. Numerous factors affect the effectiveness of MLP-based ANN models,
including the transfer function and number of nodes in the hidden layer, and the initial
weights. If any of these factors is chosen incorrectly, the ANN will be poor, and the likeli-
hood of the solution reaching the global optimum will be low. The GA has proven to be
effective in resolving the issues of the ANN [27,57]. So, this research demonstrates the use
of GA in ANN to overcome the drawbacks of ANN for forecasting SL with a selection of
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all ANN model parameters optimally. In this study, the output demonstrates the value at
time frame t in the time series models of SL forecasting if the forecasting model’s inputs
cover values corresponding to points of time t−1, t−2, t−3,..., t – n. In this study, the GA is
used to choose the transfer function, inputs, neurons, combinational coefficient of LM (µ),
bias, and connection weights. These are the five most important ANN parameters for SL
forecasting. These ANN model parameters can be found in the chromosome, which is a
binary string. The input parameters are found in the first part of the chromosome.

In the second part of the chromosome, a 3-bit binary number shows the transfer
function for the hidden and output layers. In this section, the transfer functions in the
output layer and the hidden layer are shown. Transfer functions are available in three
different types: linear, log sigmoidal and tan sigmoidal. There are nine different ways to use
transfer functions for the hidden and output layers. In the third part of the chromosome,
5 bits stand for the neurons in the hidden layer. During modeling, this binary number
is turned into a decimal number. This is performed to make the hidden layer neurons.
Due to the complexity and cost of processing the model, hidden neurons are limited to 32.
All of the decimal numbers from 1 to 32 can be shown with 5-bit chromosomes. The 4th
part of the chromosome denotes the µ, which is an 8-bit binary number. The µ showed
decimal values from 0 to 255, which is normalized between 0.0010 and 9×109 [24]. In the
fifth section, the biases and weights of the connections of ANN models are shown. The
length of the chromosome changes because the number of hidden neurons and the number
of inputs change. The ANN-MOGA forecasting models are designed with GA parameters
such as the number of generations, the size of the population, the rate of mutation, and
the probability of a crossover. In this study, a uniform crossover with a high probability
value (0.6) and a low probability of constant mutation (0.05) was used. The values of
each chromosome’s fitness are estimated using the fitness function (RMSE) of the training
dataset. The maximum generations (50) were considered as stopping criteria.

Both objective functions assessed the fitness values of each chromosome for the initial
population. The chromosomes were sorted using a controlled non-dominating sorting
strategy. In non-dominating sorting, the population was arranged according to the non-
dominance level on various fronts (referred to as levels) [36]. To determine whether the
solution does not predominate in the population, the following guidelines are used:

Bias [i] > Bias [j] and Variance [i] ≥ Variance [j] (3)

or
Bias [i] ≥ Bias [j] and Variance [i] > Variance [j], i 6= j (4)

where the chromosome numbers i and j are used. The solutions of the same non-dominated
front are compared to establish the solution’s overall ranking after the non-dominated
fronts are obtained. To compare solutions from the same non-dominated front, a crowding
distance is used [36]. The final step was to obtain the solutions’ overall rank using the
crowded-comparison operator, which combines the crowding distance and the measure
of non-dominated rank. The multi-objective GA framework iteratively improves the
beginning chromosomes according to their overall rank through various genetic operational
processes, such as mutation, crossover, and selection. The tournament selection approach
was used to make the decision [58]. The chosen chromosomes were subjected to crossover
and mutation operations. Every generation also known as an iteration was followed by the
crossover operation, which involved swapping out a portion of the binary strings of the
available solutions to produce better individual solutions. According to the user selected
mutation rate, the mutation operation is carried out by randomly flipping bits (0–1 or
1–0) of the chromosomes in order to diversify the existing solutions and avoid trapping
at local minima. A child population Q0 of size N is produced by the mutation, selection,
and crossover operators at iteration 0. The overall number of chromosomal solutions for
any iteration t following the genetic operations is Rt = Pt ∪ Qt becomes twice (2N). P and
Q represent the parent and child populations, respectively. R represents the total number
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of chromosomal solutions after the genetic operations. The objective functions of each
solution (Rt) were determined by calculating, and the solutions have been ranked using
the previously discussed Non-Dominated Sorting criteria and crowding distance. The rest
solutions were eliminated from the solution space, and the top N solutions determined
by their whole rank were chosen (referred to as elitism) for the following generation.
The maximum number of individuals permitted from the ith non-dominated front as
shown in Equation (5) is provided diversity in the new population, based on the geometric
distribution [36].

N ×
(

1− r
1− rK

)
× ri−1 (5)

where K indicates the number of undominated fronts and r represents the reduction rate,
which has a value lower than 1.

The proposed study combined the Controlled Elitist NSGA (CE-NSGA) and ANN
models. The CE-NSGA is a more familiar GA-based multi-objective algorithm. The CE-
NSGA has more capability to maintain the diversity of population for convergence to
an optimal Pareto front by controlling elite numbers. The ANN model was used to find
the two objectives such as error variance and mean error in CE-NSGA for ranking of
non-dominated. The ideal parameters for the ANN model were chosen based on the most
optimal solution from the final CE-NSGA generation. With these best ANN parameters,
the ANN model can be applied to forecast the river system’s SL with given known input
parameters. Figure 2 shows the flow chart for the multi-objective GA-based ANN model.
In this study, AR forecasting models are designed by the linear combination of previous
data of the variable (SL). The AR model is a fundamental class of time series model.

The AR model’s equation is presented below [12]:

SLt+1 = a0SLt + a1SLt−1 + a2SLt−2 + . . . + anSLt−n (6)

where n is the number of orders for the AR model, and ai (i = 0, 1, 2,..., n) represents the
regression model’s coefficients. The MAR was designed using training datasets and the
linear combination of the Autoregressive of multiple variables (WD, T, RF, and SL and
spatial variables (R, CA, and RT). The MAR formula is shown below

SLt+1 = a1WDt + b1RFt + c1Tt + d1SLt,+a2WDt−1 + b2RFt−1 + c2Tt−1+

d2SLt−1 + . . . + anWDt−n + bnRFt−n + cnTt−n + dnSLt−n + eRT + f R + gCA
(7)

The linear MAR forecasting model is represented by this equation up to n lags. The ai,
bi, ci, di, e, f, and g (i = 1,2, 3, . . . .., n) represent the coefficients of the MAR model. The ai, bi,
ci, and di represent the coefficients of WD, RF, T and SL, respectively. The coefficients of the
RT, R, and CA are represented by the values e, f, and g, respectively. The maximum lag (n)
in AR and MAR model for the SL forecasting is 12, after which the cyclicity begins due to
seasonal behaviour of the data. There are four temporal variables: WD, SL, RF, and T. The
RT, CA and R are the spatial variables.

4. Results and Discussion
4.1. Data Analysis

The non-linear comparison between different parameters is found using Spearman
rank correlation coefficients which are presented in Table 1. The Spearman rank correlation
of T and SL, RF and SL, and WD and SL are represented by r3, r2, and r1, respectively. The
WD and SL have a significant and high Spearman rank correlation coefficient value which
is represented by r1. It is found that SL has comparatively smallest and greatest values
of the Spearman rank correlation with the WD at the Kntanmal and Rajim, respectively
among all gauging stations (Table 1). The Pearson rank correlation coefficient between
RF and SL has a significant value (greater than 0.5 at all eleven gauging stations) which is
represented by r2. It shows that RF is significantly correlated with the SL.
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Table 1. Spearman rank correlation coefficient ® of hydro-climatolic data from eleven stations for
the MR.

Stations r1
(WD-SL)

r2
(SL-RF)

r3
(SL-T)

Tikarapara 0.891951579 0.667566099 0.167164223
Sundargarh 0.933162643 0.719490012 0.083275757

Simga 0.912171157 0.669144968 0.016117111
Jondhara 0.953615062 0.634788084 0.024002708

Andhiyarakhore 0.930440984 0.679483679 0.172300271
Kurubhata 0.914790531 0.739541786 0.09457768
Bamnidih 0.792975574 0.673800075 0.19294038

Rajim 0.933515452 0.652771319 −0.053703323
Kantamal 0.784858255 0.653582343 0.045884228
Baronda 0.896128553 0.718865603 0.170015607

Basantpur 0.900261237 0.717722236 0.120971863

Furthermore, it is observed from Table 1 that the Spearman rank correlation coefficient
between T and SL is small and insignificant which is represented by r3. This indicates
that T has an indirect effect on SL and did not directly contribute significantly to SL. It is
found that the SL data have the greatest coefficient of variation value, maximum/mean,
skewness, and Kurtosis among all hydro-climatic data (WD, RF, T, and SL) in the MR which
indicates that the SL is more dispersed than the other parameters (WD, RF, and T), as well
as extremely erratic and complicated, with a non-normal distribution in the MR basin [24].
Thus, forecasting SL by the model is very difficult as compared to the other variables.

There were significant temporal as well as spatial variations in the SL. Variations of
monthly average WD, RF, T, and SL data over 20 years with spatial variation (R, RT, and CA)
of each gauge station in the logarithm scale are shown in Figure 3. Due to huge variations in
the dataset, we have followed the logarithm scale so that maximum data values are shown
in Figure 3. It is seen in Figure 3 that the pattern of decrease in WDs and corresponding
sediment load is the same sediment load, except for Kantamal station. Further, Tikarapara
station indicates the highest WD, CA, R, RF, and SL, whereas Andhiyarakore station shows
the lowest values of it. Furthermore, it has been noted that SL changes proportionally with
WD, with the Tikarapara gauge station recording the highest values due to the highest WD
amongst all gauge stations. The highest CA is also observed at this gauge station. Lowest
R is found at the Bamnidih. The lowest rock value is found at Kantamal. Variations in RF,
WD, T, and SL during the decades of 1990–2000 and 2000–2010 at different locations such
as upstream, midstream, and downstream in the MR are given in Figure 4. The highest
decrement in sediment yield is found at Tikarapara station among all stations. This may
have been caused by the SL trap at the Hirakud dam, which is upstream of the Tikarapara.
Higher amount of SL is also decreased at Basantpur gauging, which may be due to traping
of SL at large Minimata Bango dam nearest to this station.

Since the SL, WD, RF, and T data are seasonal and available monthly, they are in-
fluenced by the data from the previous month. The maximum lag for the forecasting
model must be selected. To evaluate the temporal correlations of SL, WD, RF, and T, an
Autocorrelation Function (ACF) is employed. Figure 5 depicts the ACF of the SL with
different time lags. The highest correlation was found at lag 1, and it decreases as the time
lag increases (Figure 5). Additionally, it was noticed that ACF exhibited the next highest
peak value at lag 12, supporting the seasonality of the SL dataset. The ACF plot illustrates
that the highest lag is 12, after which seasonal data behavior indiciate cyclicity.
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4.2. ANN-MOGA Forecasting Model

A set of final solutions in the form of Pareto solutions have been provided by the model
at predetermined stopping criteria that correspond to the highest number of generations
(50). Figure 6a depicts the variation in bias and variance during the training stage. In
the training stage, MSE (0.00352) and its subsequent variance value (0.000651) and bias
(0.00424) were found to be the best Pareto solution. Figure 6b shows the variation in
crowding distance among individuals. Figure 6c displays the rankings of the individual.
Figure 6d illustrates the Pareto average spread variation with generation.
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Table 2 lists the various types of models with lag input variables. The ANN-MOGA-51
models are built using previous time series of temporal variables (WD, R, SL, and T) with
12 lags for each variable and 3 spatial variables (CA, RT, and R). The ANN-MOGA-48
models are built on prior time series temporal data (WD, R, SL, and T) with 12 lag for each
variable and without considering the spatial data. The ANN-MOGA-15 model is developed
by 15 input variables (12 lag time series inputs of SL and 3 spatial factors) for forecasting
one-step-ahead of SL.

Table 2. Various multi-objective GA-based ANN models using different input variables with lags.

Models Number of Initial Inputs Input Parameters

ANN-MOGA-51 51 SL, WD, RF, T, RT, R and CA
ANN-MOGA-48 48 SL, WD, RF and T
ANN-MOGA-15 15 SL, RT, R and CA
ANN-MOGA-12 12 SL

The ANN-MOGA-12 models are established using previous time series SL only data
with 12 lags. The lag for each temporal data (RF, T, WD, and SL) is twelve. All of these
models’ performances are compared to assess the forecasting capability of models as per
statistical error analysis. The statistical error is used as an evaluation metric, and the
performances of the different models are compared to one another to determine which
model performs the best. Validation, training, and testing dataset are assessed to evaluate
error statistics such as the Mean Square Error (MSE), the correlation coefficient (r), the Root
Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the error variance (VAR)
for the forecasting models.

RMSE =

√√√√(∑N
i=1(Oi − Fi)

N

)2

(8)

MSE =

(
∑N

i=1(Oi − Fi)

N

)2

(9)

MAE =
∑N

i=1|Oi − Fi|
N

(10)

r =
∑N

i=1
(
Oi −Oi

)(
F− Fi

)
∑N

i=1
(
Oi −Oi

)
∑N

i=1
(

Fi − Fi
) (11)

VAR =
∑N

i=1
(
E− E

)2

N
(12)

where, Oi, Oi, Fi and Fi are measured, measured mean, forecasted and forecasted mean
values, respectively. The N value represents the number of samples. The E and E represent
the mean error and error values.

All hybrid multi-objective GA-based ANN hybrid forecasting models use statistical
errors obtained from testing, validation, and training datasets for one-step-ahead fore-
casting of the SL value, which is presented in Table 3. The statistics of all errors of testing,
validation, and training data for the ANN-MOGA-12, ANN-MOGA-48, ANN-MOGA-15,
and ANN-MOGA-51 models reveal that r is relatively high, while error variance, RMSE,
MAE, and MSE are all low. It can be implied that these models are highly accurate at
predicting SL. High levels of consistency across the three datasets show that generalized
forecasting models were produced and that neither overfitting nor underfitting occurred.
Among all comparative models, the ANN-MOGA-51 model stands out as the best. Table 4
lists the GA-optimized parameters chosen for the designed ANN-MOGA models. Two
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and twenty-nine are the optimum combinational coefficient (µ) and neurons, respectively.
Pure linear and log sigmoidal transfer functions are optimally selected at the output
layer and hidden layer, respectively, in the ANN-MOGA-51 model. Twenty-nine neurons
are the best number for an ANN model’s hidden layer. After the evolution run, the
best-fit chromosomes were used to determine the best solution for the ANN- MOGA-51
model.

Table 3. Performance comparison of the hybrid multi-objective GA-based ANN forecasting models
in the testing phase.

Models RMSE Initially
Inputs No. MSE MAE VAR r

ANN-MOGA-51 0.011639 51 0.000135 0.003802 0.000136 0.643313
ANN-MOGA-48 0.013343 48 0.000178 0.00381194 0.0001783 0.5674853
ANN-MOGA-15 0.013637 15 0.000186 0.0044 0.000186 0.513217
ANN-MOGA-12 0.01181 12 0.000139 0.003626 0.00014 0.623344

Table 4. Optimally selected parameters of ANN-MOG models.

Models Transfer Function Neurons Inputs µ

ANN-MOGA-51 Log-sigmoid, pure linear 29 22 2
ANN-MOGA-48 Tan-sigmoid, pure linear 19 21 9
ANN-MOGA-15 Pure linear, tan-sigmoid 15 10 10
ANN-MOGA-12 Tan-sigmoid, pure linear 4 6 6

Table 5 displays the error statistics for the 11 gauge stations determined with the
best ANN-MOGA-51 model. It is also clear from Table 5 that there is a wide range of
performance between the stations, with some stations providing good performance and
others showing poor performance. The unpredictable and complex non-linear nature of
SL delivers the forecasting model incapable of providing accurate forecasts of SL at the
Andhiyarakhore and Baronda stations. The forecasting model’s inaccuracy is a direct
result of the low CA and the flat land. Located in the Raipur district of Chhattisgarh,
India, Simga is the first gauging station of the MR after its origin near Nagri town and
Pharsiya village. Both WD and SL are low at this station. At the Simga station, the
forecasting model is providing worse results. Due to the high coefficient of variation (COV),
max/mean ratio, skewness, and kurtosis value of influential parameters, many AI models
were not performing well at some MR stations [36]. Forecasted and actual SL have a high
degree of correlation at the Tikarapara, Kurubhata, and Jondhra gauging stations (r values
greater than 0.7). This reveals the proposed model’s high performance at these locations.
The r value of 0.4780 for the Basantpur gauge station is not significant. Poor correlation
between the WD and SL, caused by the large Minimata Bango dam upstream of this station,
contributes to the proposed model’s bad performance at this location. The remaining
gauging stations have a significant r value between 0.5 and 0.7, indicating a moderate
correlation [59].
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Table 5. Error statistics of ANN-MOGA-51 forecasting model during validation, testing, and
training phase.

ANN-MOGA-51 MSE RMSE r Error
Variance MAE

Training 0.000241 0.015526 0.668938 0.000241 0.004677
Validation 5.25 × 10−5 0.007243 0.7730 5.26 × 10−5 0.002867

Testing 0.000135 0.011639 0.643313 0.000136 0.003802
Tikarapara 0.000396 0.019905 0.731051 0.000407 0.010517

Simga 1.17 × 10−5 0.003422 0.5930 9.81 × 10−6 0.001707
Andhiyarakhore 1.10 × 10−5 0.003319 0.4001 9.06 × 10−5 0.001749

Sundargarh 2.60 × 10−5 0.005097 0.635 2.67 × 10−5 0.002466
Bamnidih 3.33 × 10−5 0.005769 0.695 3.27 × 10−5 0.002765
Jondhara 3.02 × 10−5 0.005499 0.737 2.91 × 10−5 0.002534

Kurubhata 2.06 × 10−5 0.001434 0.914 1.97 × 10−6 0.000865
Basantpur 0.000229 0.015121 0.478143 0.000222 0.006185
Baronda 5.66 × 10−6 0.002379 0.495 5.23 × 10−6 0.001319

Rajim 2.10 × 10−6 0.001448 0.669 2.15 × 10−6 0.000722
Kantamal 0.000806 0.028395 0.659518 0.000801 0.01198

Figures 7 and 8 illustrate the ANN-MOGA-51 model’s hydrologic graph and scatter
plot, respectively. The hydrologic graph revealed that, except for the Kantamal, Andhi-
yarakore, Simga, and Bamnidih stations, the predicted SL corresponds to the observed
SL data’s variability. Andhiyarakhore is a small tributary that has a relatively small CA;
however, despite its size, it carries a relatively small SL. The reason for this is that relatively
small CA basins are unable to store SL and allow for the complete removal of all material
that has been eroded. The presence of a large dam named Minimata Bango at Bamnidih is
the primary factor that contributes to the modeled output not being accurate. Although
Simga has a topography that is almost entirely composed of limestone and a relatively
large catchment area, the area is relatively flat. Because of this, the sediment yield and
water discharge are relatively low in comparison to those of other tributaries, such as
Seonath and Tel, which have a smaller catchment area. Further, its complex non-linear
erosion and transportation process of sedimentation resulted in the poor performance of
the proposed model at some gauging stations. The high skewness, Kurtosis, coefficient
of variation (COV) and maximum/mean value of suspended sediment load indicate its
complex and highly erratic behaviours as compared to other variables (water discharge,
rainfall and temperature). Thus, estimation of suspended sediment load through mathe-
matical models is very difficult comparative to other variables [24]. The highest coefficient
of variation of rainfall is found at Kantamal. This could also explain the corresponding
water discharge and the SL dataset’s wide variation and non-normal distribution. Similarly,
the ANN-MOGA-51 results are nearer to the bisector line which is also known as the 45

◦

line, except for the four gauging stations that were mentioned earlier (Figure 8). The scatter
plots and hydrographs show that the magnitudes and medium, high, and low SL forecasted
values generated by the best ANN-MOGA-51 forecasting model are also fairly close to the
corresponding actual SL values. The ANN-MOGA-51 model displayed a positive value
SL at each of the 11 gauge stations, although the SL output was either 0 or very near zero
(Figures 7 and 8). Based on these findings, it was determined that the application of ANN
in conjunction with GA is the method that yields the most accurate results for calculating
SL in the MR basin system. The forecasting model provides the highest level of accuracy at
the Tikarapara gauging station compared to any other station gauging station. This may be
due to the location of Tikarapara, which is at the most downstream portion of the MR basin
and possesses the highest WD, CA, RF, and SL of any of the gauging stations [24,47].
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4.3. AR Forecasting Model

In an autoregression model, the SL forecast is generated through a linear combination
of the SL time series data. In this study, AR models are developed by the linear combination
of previous data of the variable (sediment yield). The AR model is a fundamental class
of time series model. It predicts future values by adding up the weighted sums of lagged
past data. Various AR models were developed by different input parameter selections with
different autoregression of the variable and compared the performances of each other. In
this method, the maximum lag selection is considered 12 due to seasonal variation of data
and using ACF.

The error statistics of the AR model are given in Table 6. The test dataset’s low MAE
and RMSE, as well as its high r value, revealed that the AR forecasting model could
justifiably fit the data. The training dataset revealed a similar pattern of behavior, which
is not surprising given that the linear model will never be overfitted to the training data.
It reveals that the RMSE, MSE, and MAE of training and testing data are trending in
the same direction because these are related to one another in a direct proportion, as
expected for the linear model. It is observed that this model does not provide satisfactory
performance at various gauging stations. The r values are not significant at various gauging
stations. Poor correlation is found in all gauging stations except Tikarapara, Kurubhata,
and Bamnidih. It is seen in the hydrograph (Figure 9) and scatters plot (Figure 10) that
the AR model generates a greater percentage of negative SL values at low SL values as
compared to other models. The AR provided the best result at Tikarapara similar to MAR
and ANN-MOGA-51 models.

Table 6. Error statistics of the autoregressive (AR) forecasting model at different gauging stations.

AR RMSE MSE MAE VAR r

Training 0.01640 0.00027 0.00473 0.00027 0.61268
Testing 0.01335 0.00018 0.00365 0.00018 0.49670

Tikarapara 0.02576 0.00066 0.01119 0.00066 0.51087
Simga 0.00185 3.42 × 10−6 0.00069 3.49 × 10−06 0.19322

Andhiyarakhore 0.00020 4.07 × 10−8 9.30×10−5 4.15 × 10−08 0.40166
Sundargarh 0.00555 3.08 × 10−5 0.00303 3.02 × 10−05 0.44791
Bamnidih 0.00024 5.56 × 10−8 0.00012 5.46 × 10−08 0.58226
Jondhara 0.00668 4.46 × 10−5 0.00323 4.48 × 10−05 0.48917

Kurubhata 0.00222 4.92 × 10−6 0.00103 4.72 × 10−06 0.74650
Basantpur 0.01059 0.00011 0.00411 0.00011 0.32857
Baronda 0.00187 3.49 × 10−6 0.00073 3.56 × 10−6 0.25906

Rajim 0.00177 3.14 × 10−6 0.00079 3.18 × 10−6 0.37205
Kantamal 0.03386 0.00115 0.01481 0.00116 0.36473

4.4. The Multivariate Autoregressive (MAR) Forecasting Model

The MAR model was designed using training datasets and the combination of the
autoregression of multiple factors (WD, RF, SL, and T) as well as spatial variables (CA,
RT, and R). The MAR model forecasted a one-step-ahead of the SL value using 51 input
parameters (12 from each of the 4 temporal parameters and 3 from the spatial parameters).
There is no need for a validation dataset because the linear model does not overfit.
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Figure 9. Comparison of the actual and forecasted SL during the testing phase of the AR forecasting
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For testing, the same testing data that were applied to the ANN models were used.
Table 7 displays the MAR model’s error statistics. During the phases of training and testing,
it was observed that the RMSE and MAE are very low, and r is high, demonstrating that the
MAR forecasting model can reasonably fit the data. It is observed that Tikarapara shows
the highest coefficient of correlation between the actual and forecasted SL values, and
Andhiyarakhore station has the lowest correlation coefficient. The proposed model offered
the best level of accuracy at the Tikarapara site and the lowest accuracy at Andhiyarakhore.

Table 7. Error statistics of single forecasting MAR model at each station.

MAR MAE VAR r MSE RMSE

Training 0.00640 0.00023 0.68010 0.00023 0.01516
Testing 0.00562 0.00017 0.55620 0.00017 0.01296

Tikarapara 0.01306 0.00054 0.62380 0.00052 0.02284
Simga 0.00395 2.65×10−5 0.49380 2.99×10−5 0.00547

Andhiyarakhore 0.00260 1.20×10−5 0.39130 1.16×10−5 0.00341
Sundargarh 0.00486 4.91×10−5 0.45670 4.79×10−5 0.00692
Bamnidih 0.00272 1.53×10−5 0.61440 1.66×10−5 0.00407
Jondhara 0.00458 5.44×10−5 0.63700 5.36×10−5 0.00732

Kurubhata 0.00228 1.01×10−5 0.74210 9.80×10−6 0.00313
Basantpur 0.00610 0.00010 0.62500 0.00011 0.01025
Baronda 0.00306 1.75×10−5 0.44590 1.70×10−5 0.00412

Rajim 0.00309 1.64×10−5 0.43390 1.59×10−5 0.00398
Kantamal 0.01652 0.00111 0.39780 0.00108 0.03292

Figures 11 and 12 show the MAR model’s hydrograph and scatter plot. The figure
clearly shows that the MAR model presented a negative number where the SL is zero or
near zero. It was also realized that the model could not capture low SL as evidenced by
the scatter plot, which predicts a negative value in the case of low SL data including all
stations. The modeled SL at Bamnidih and Andhiyarakore varies greatly at all peaks and
during small SL. However, SL cannot be negative in actuality.

In the scatter plot, it is found that the MAR results are not closer to the bisector line at
the Andhiyarakhore and Bamnidih gauging stations. It was noticed that the linear MAR
model is unable to handle non-linearity behavior and, as a result, some negative forecasted
values of SL are obtained.

4.5. Comparison Results of Forecasting Models

The best hybrid model (ANN-MOGA-51), traditional MAR, and AR models were
compared using the same test data. Table 8 shows that the ANN-MOGA-51 model has the
least RMSE, variance, MSE, and highest r score when compared to all other comparative
models (MAR and AR). This statistical study indicates that the ANN-MOGA-51 model
is the best. As a result, when the optimized input variables and associated elements are
taken into account, the ANN-MOGA-51 model outperforms both the AR and MAR models.
This advantage is due to the selection of optimal of all ANN parameters using the GA. The
good performance of the ANN-MOGA-51 model may be attributed to the utilization of
time series lag data of SL, RF, T, and WD with spatial data (CA, R and RT), which are more
informative by ANN in conjunction with multi-objective GA method and lagged input
variable selection using multi-objective GA.

912



Water 2023, 15, 522 21 of 26
Water 2023, 15, x FOR PEER REVIEW 21 of 26 
 

 

 

Figure 11. Comparison of the actual and forecasted SL during the testing phase of the MAR fore-

casting model (a-k). 

Figure 11. Comparison of the actual and forecasted SL during the testing phase of the MAR forecast-
ing model (a–k).

913



Water 2023, 15, 522 22 of 26Water 2023, 15, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 12. Scatter plot of the actual and forecasted SL of the MAR forecasting model during the 

testing phase (a-k). 

Figure 12. Scatter plot of the actual and forecasted SL of the MAR forecasting model during the
testing phase (a–k).

914



Water 2023, 15, 522 23 of 26

Table 8. Statistical performance evaluation of ANN-MOGA-51, AR, and MAR models along with all
gauging stations in a testing phase.

Models ANN-MOGA-51 MAR AR

Statistics RMSE r RMSE r RMSE r

Testing 0.01164 0.6433 0.01296 0.5562 0.01335 0.4967
Tikarapara 0.01991 0.7311 0.02284 0.6238 0.02576 0.5109

Simga 0.00342 0.5930 0.00547 0.4938 0.00185 0.1932
Andhiyarakhore 0.00332 0.4001 0.00341 0.3913 0.00020 0.4017

Sundargarh 0.00510 0.6350 0.00692 0.4567 0.00555 0.4479
Bamnidih 0.00577 0.6950 0.00407 0.6144 0.00024 0.5821
Jondhara 0.00550 0.7370 0.00732 0.6370 0.00668 0.4892

Kurubhata 0.00143 0.9140 0.00313 0.7421 0.00222 0.7465
Basantpur 0.01512 0.4781 0.01025 0.6250 0.01059 0.3286
Baronda 0.00238 0.4950 0.00412 0.4459 0.00187 0.2591

Rajim 0.00145 0.6690 0.00398 0.4339 0.00177 0.3721
Kantamal 0.02840 0.6595 0.03292 0.3978 0.03386 0.3647

Table 8 demonstrates that the AR model performs the worst due to the highest RMSE,
MSE, variance, and lowest r as compared to other models. This worst performance in the
AR model is also caused due to the consideration of only SL as the lag time input variable
and the exclusion of temporal (WD, T, and RF) and spatial (R, RT, and CA) data. The
ANN-MOGA-51 model improved the performance by 12.81% and 10.19% from traditional
AR and MAR regression models, respectively. It is also observed from Tables 3 and 8 that
all hybrid intelligence-based models (ANN-MOGA-12, ANN-MOGA-15, ANN-MOGA-48
and ANN-MOGA-51) are providing better results than the traditional regression models
(MAR and AR) models on the basis of RMSE and r as performance evaluation criteria.

5. Conclusions

This study revealed the forecasting of SL by the ANN-MOGA-51, MAR, and AR
models with a time lag at eleven stations in the MR using various inputs of hydro-climatic
factors (RT, RF, T, WD, R, and CA). The input parameters of the SL in the MR were
found to be the primary governing factors. The results showed that the ANN-MOGA-51
models performed well and had a higher generalization capability, which was obtained by
concurrently optimizing all ANN parameters using the MOGA. As a result, simultaneously
optimizing all ANN parameters and input subsets with the MOGA is a better method with
satisfactory performance and less computation cost than the traditional grid search and trial-
and-error methods. The hydrograph and scatter plots of the ANN-MOGA-51 model also
show that the magnitude of the proposed model’s medium, low, and high SL forecasting
was closer to the observed values. The best ANN-MOGA-51 model forecasted a positive
sediment value even when SL was zero or near zero at all 11 sites in the MR, which is an
interesting finding from the hydrograph and scatter plots. On the other hand, MAR and AR
models provided negative SL values where SL is low or close to zero. This demonstrated
that the data, particularly small, valued samples, exhibit significant non-linear behavior
which is not captured by traditional MAR and AR forecasting models.

The results revealed that the hybrid ANN-MOGA model performed significantly
better than other traditional MAR and AR models in terms of performance. This is the
most appropriate approach because of the relatively better performance and ease of imple-
mentation. Thus, the proposed forecasting models are of great assistance to water resource
planners and managers because they allow for a better understanding of the problems
caused by sedimentation and allow for the finding of alternative solutions to manage
the issues in the future by utilizing prior knowledge of forecasting SL. The RF intensity
is also an important factor of the SL that is not incorporated in this research due to its
unavailability for the improvement of modeling performance but will be considered in
future research.
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A B S T R A C T   

Background: Several IoT nodes are deployed in the monitoring environment to ensure reliability. In both sensor 
and sink nodes, the same data is sensed and forwarded. While redundant data maintains reliability, sink nodes 
waste energy processing the redundant data. 
Objective: In order to upholdthe compromiseamong energy ingesting and reliability, necessary to eliminate the 
redundancies in sensed data up to an appropriate level. Data aggregation algorithms currently assign time slots 
based on data sensing period and program rate, disregarding packet loss and latency. 
Methodology: In this paper, we suggest a cluster based reliable data aggregation (CRDA) scheme for IoTnetwork 
which ensures data collection and aggregation in energy efficient manner and transfer to another end very 
effectively. We first introduce a monarch and sine-cosine (MSC) algorithm to form clusters by grouping the IoT 
sensors which ensures the effective data transferring. In data aggregation phase, we utilize the multiple design 
metrics to compute the trust degree of each IoT sensors and design an improved sunflower optimization (ISFO) 
algorithm to optimize the design constraints. The highest trust degree owned swelling is act as cluster head (CH) 
of the cluster which ensures data aggregation. A reformative optimal–learning-based deep neural network (ROL- 
DNN) is then used to compute routes between IoT sensors which ensures reliabledata aggregation and 
transferring. 
Results: and analysis: Finally, we validate our proposed routing with the different simulation scenario and their 
results are compared with the existing routing protocols to prove the effectiveness.   

1. Introduction 

Internetof Things (IoT) permits brilliant articles and savvy frame-
works to collect and share information worldwide to allow shrewd 
climate [1]. There is a developing interest in the utilization of remote 
detecting advancements in different IoT situations.Given the enormous 
development of objects and their applications, gathering and examining 
their item information is becoming one of the significant difficulties. As 
sensor hubs are controlled by batteries, energy productive activities are 
critical. For this reason, it is attractive for the sensor hub to de-copy the 
information got from the adjoining hubs prior to communicating the last 
information to the focal station. Information accumulation [2,3] is one 
of the powerful strategies to wipe out information overt repetitiveness 
and further develop energy productivity; expanding the lifetime of 
remote sensor organizations (WSNs). A difficult issue for data manage-
ment is effectively deliver data to relevant users. It uses economical 

techniques such as efficient flow distribution systems for IoT [4]. The 
system collects integrated data streams generated from different col-
lectors and transmits relevant data to relevant users based on user 
queries entered into the system [5]. Create two new data structures to 
meet the requirements of high efficiency data flow propagation in two 
conditions, such as point-to-point systems and flow propagation in 
wireless transmission systems. Assessment of approaches using 
real-world datasets shows that they can transmit connected data streams 
more efficiently than current technology [6]. 

In IoT advances, multiple data configurations are recommended for 
efficient data processing and minimal data recovery. This includes 
storing centralized data, such as the cloud system, on nearby distribu-
tion systems. Smart cities are the practical implementation of IoT, which 
aims to provide people with efficient, reliable and secure applications 
such as water, electricity and transportation through rational manage-
ment [7]. The database-based IoT platform is required to implement 
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manageable and sustainable smart applications and build new applica-
tions on them. A service-based architecture developed using key features 
of smart application are web resource management, end-to-end data, 
and IoT application platform [8]. Raising the inefficiency of health 
infrastructure and biomedical systems is one of the least ambitious as-
pects of modern society. Recent advantage in IoT knowledge design is 
used to control the development of intelligent organizations to support 
and improve health and biological processes. Possible examples include 
automation, population monitoring, biomechanical facilities in hospi-
tals, affiliated medical associations, and direct medical monitoring of 
physical effects to predict medical disorders [9]. RFID low-power de-
vices using passive and/or passive devices use ability to transfer data 
when using suspicious electromagnetic field. Passive RFID symbols do 
not require resource energy to work, so their lifespan calculated in de-
cades, allowing RFID technology to adapt to a variety of applications, 
including healthcare. IoT devices can remotely access the Internet, but 
can use various data collection and new management features provided 
by IOT to create applications [10] those health system solutions. How-
ever, the combination of these technologies has not yet been used for 
security purposes. 

Portable edge processing worked with protection saving information 
rundown for IoT in light of the homomorphic properties of the Boneh- 
Goh-Nissim cryptosystem [11].A correspondence productive informa-
tion total tree (AT) [12] is proposed for complex necessities in IoT. 
Changed gain of total capability considering arrangement limit and 
collection cost mutually. Area based secure rethought conglomeration 
(LBOA) [13] utilizes steering chain, request security encryption, and 
other cryptographic capability to amplify the worth of detected infor-
mation that sticks to the area system.A gadget based unknown protec-
tion saving (APPA) [14] confirmation conspire is proposed for 
information combination in haze improved IoT frameworks that upholds 
numerous specialists to oversee savvy gadgets and mist hubs locally.A 
consistency-ensured and energy effective rest booking calculation 
(CG-E2S2) [15] is utilized for information that not entirely set in stone 
by a Markov dynamic cycle thinking about the energy proficiency of IoT 
gadgets.Brilliant meters compute their portions by information encod-
ing (FHE) in a haphazardly created polynomial (secure MPC) [16]. 
Encrypted information shares are collected in a succession to the orga-
nization entryway utilizing an aggregator without uncovering the 
genuine worth of the measurement. An unquestionable secure 
conglomeration conspire [17] executes an entrusted collection hub to 
perform information accumulation from source hubs without unveiling 
information. TinyECC gives start to finish protection and empowers 
early assault location through jump by-bounce assessment, in this way 
lessening the need to depend altogether on synchronization for check 
[18].Information incorporation actually settles on the best choices 
consequently over Low-power and lossy organization (LA-RPL) [19] for 
IoT. Protection saving Heath information mix programming safely 
gathers wellbeing information from different sources and gives fair 
motivators to patients. Boneh-Goh-Nissim cryptosystem and Shamir 
secret sharing are utilized to keep up with information obscurity security 
and adaptation to non-critical failure [20]. 

Our contributions.A cluster based reliable data aggregation (CRDA) 
arrangements proposed for IoT network which ensures data collection 
and aggregation as energy efficient manner and transfer to another end 
very effectively. The key contributions of plannedCRDA arrangement 
are abridged as follows.  

1. A monarch and sine-cosine (MSC) algorithm is used to form clusters 
by grouping the IoT sensors which ensures the effective data 
transferring.  

2. Then, we utilize the multiple design metrics to compute the trust 
degree of each IoT sensors and design an improved sunflower opti-
mization (ISFO) algorithm to optimize the design constraints. 

3. ROL-DNN is used to compute routes between IoT sensors which en-
sures reliable data aggregation and transferring. 

4. Finally, we validate our proposed routing with the different simu-
lation scenario and their results are associated with the prevailing 
routing protocols to prove the effectiveness. 

The rest of this paper is prearranged as follows: Sect. 2 designates the 
recent works connected tothe reliable data aggregationscheme. Sect. 3 
illustrates the problem methodology and system perfect of our planned 
CRDA scheme. The thorough employed process of our plannedCRDA 
scheme is explained in Sect. 4 with the proper mathematical model. The 
imitation outcomes and qualified analysis are deliberated in Sect. 5. 
Finally, this paper is decided in Sect. 6. 

2. Related works 

Today, the Internet of Things (IoT) is receiving significant courtesy in 
various theoretical and real-world explore areas. The data-intensive 
countryside of IoT makes collecting data in such organizations very 
difficult. The primary objective of data combination is to reach large 
amount of Quality of service (QoS) such as optimal data broadcast la-
tency, dependability and energy ingesting. 

Chandnani et al. [21] have proposed the ANT-PSO-AODV is a secure 
data aggregation method that uses trust-based techniques and ANT 
particle swarm optimization to detect and secure data transmission from 
CH to the sink. Clusters are formed based on proximity within each zone 
and secret sharing scheme is used for secure data transmission. The 
performance of ANT-PSO-AODV is analyzed in terms of end-to-end 
delay, throughput, packet delivery ratio, energy consumption, and 
routing overhead by varying node mobility, number of sensor nodes, and 
input data rate. Amarlingam et al. [22] have proposed compressed 
sensing-aided reduced-complexity, which divides the network into 
limited overlapping groups to allow an optimal trade-off between power 
consumption, computational complexity and error recovery. The metric 
matrix used for bounded overlap clustering corresponds to ISO proper-
ties that guarantee cluster detection. Laplacianeigen-values are based on 
weighted laterality matrices to find sparse representations of unhurried 
data from arbitrarily convoluted systems. This enables high accuracy 
accumulated data to be read at the sink end. A graphical Laplacian eigen 
base in view of the weight nearness grid is utilized to track down a 
meager portrayal of the deliberate information from haphazardly 
requested networks, which allows recovering the accumulated data at 
the sink node with high reliability. Badiger et al. [23] have proposed the 
EDAS is an efficient data aggregation scheme for IoT-based wireless 
sensor networks that uses the improved low energy adaptive clustering 
algorithm (I-LEACH) to form an optimal number of cluster heads by 
considering node residual energy and average network energy. Data 
redundancy is removed using network coding, which integrates linear 
XOR operations and ensures non-repeated data transmissions. EDAS is 
evaluated in terms of network parameters and its performance is 
compared to existing schemes. 

Sajidi et al. [24] have developed the Fuzzy data integration for IoT 
(F-LEACH) project, which enables healthcare applications to extend 
network life. Fuzzy membership function optimized for the changing 
network situation, and the multi-run average was chosen as the best 
parameter. The main objective of data aggregation schemes is to 
combine and combine information parcels productively to decrease 
energy utilization and gridlock and further develop information preci-
sion. This study presents a multi-strategy similar investigation of IoT 
information assortment connected with energy squander, network life-
time, energy utilization, deferral, and number of sensor hubs. Wu et al. 
[25] (2022) have proposed a secure and efficient multi-functional data 
combination. As IoT data becomes increasingly important to potential 
privacy effectiveness. A powerful, feature-rich, and data collection 
model is used to extend SEMDA which support heterogeneous privacy. 
SEMDA security analysis was performed using a simple but attractive 
model. And this shows that SEMDA not guarantees privacy and confi-
dentiality. But also guarantees its completeness and accuracy. Khan 
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et al. [26] (2022) have designed IoT uses a beta-dominated set-based 
cluster aggregation mechanism (βDSC2DAM), It is improvement of 
traditional cluster data integration mechanism. It compares to a tradi-
tional clustering algorithm during data collection. The average hour is 
estimated as the maximum hour of the package. According to certain 
complexity, time parameters, βDSC2DAM performs better than tradi-
tional IoT clustering algorithms. 

Saleem et al. [27] have plannedfog-enabled privacy-preserving data 
aggregation (FESDA) scheme. This plan opposes malevolent information 
infusion assaults by separating added values from outer assailants [34]. 
To accomplish security, the shrewd meter utilizes a changed variant of 
the Paillier crypto-framework to scramble clients’ utilization informa-
tion.FESDA is shortcoming lenient, implying that regardless of whether 
few brilliant meters fall flat, information assortment from different 
gadgets won’t be impacted [35]. To consider its exhibition in contrast to 
three other contending plans as far as accumulation, encryption and 
correspondence costs. The discoveries show that PPFA lessens the cor-
respondence cost by half contrasted with the coordination conspire. 
Zeng et al. [28] have proposed a privacy-preserving multi-dimensional 
and directional data aggregation (MMDA) scheme for edge 
computing-enhanced IoT communications. MMDA empowers edge 
gadget m complex information of IoT gadgets to perform line accumu-
lation and section collection in two headings. Such information is uti-
lized to ascertain the amount of the information in each line and every 
segment to safeguard security.MMDA gives the capacity to give more 
experiences to the IoT control place for investigation and handling. 
MMDA takes on sequential confirmation to decrease approval cost. 
Nonetheless, these current plans are hard to carry out because of 
complicated estimations or high correspondence prerequisites. Onesimu 
et al. [29] have proposed a privacy-preserving data collection scheme 
for IoT-based healthcare systems. An anonymization model in view of 
bunching is utilized to plan a compelling security assurance plan to meet 
protection prerequisites and keep medical services IoT from different 
security assaults. UPGMA is utilized to decrease correspondence cost 
and accomplish better security. Aziz et al. [30] have proposed an effi-
cient multi-hop cluster-based coordination scheme for IoT using hybrid 
CS (EMCA-CS).This really builds the organization lifetime and lessens 
the reconfiguration blunder among CS and directing conventions. 
EMCA-CS incorporates calculation to parcel the field into various hex-
agonal cells and select a CH hub from each bunch in view of a few 
measures. Each CH sums up its group information utilizing the half 
breed CS strategy [36]. Dark Wolf-based algorithm used to make an 
ideal way for CHs to send compacted information to the BS, and a 
CSMO-GWO calculation was introduced to further develop the CS grid 
development process. Reproduction results demonstrate that the exhi-
bition beats the standard strategy as far as expanding WSN lifetime, 
diminishing energy utilization, and lessening standardized mean square 
mistake. 

3. Problem methodology and network model 

3.1. Research gaps 

There are some technical challenges in integrating wireless sensors 
into existing 5G networks, including channel features, route planning for 
wireless sensors, power charging capabilities, and integration of wireless 
sensors and IoT systems [37,38]. Coverage estimation and modeling are 
required to determine the number of wireless sensors, the optimal height 
of wireless sensors, and the neutrality of message among wireless sen-
sors and ground users. The use of wireless sensors in urban environments 
requires consideration of road damage. Wireless sensors often run on 
limited battery power, so the performance of sensors is limited by their 
limited internal power. Therefore, it is important to use energy wisely to 
complete sensors and transportation. In IoT networks, optimal routing is 
required for data collection. However, in order to provide a means of 
communication to ground users, the IoT network must be considered. 

Limited energy is a barrier to IoT networks. Also, energy harvesting can 
be used to enhance IoT sensors using green energy [39]. Energy-efficient 
methods such as wireless power transfer can be smart solutions to 
improve charging efficiency. The unique features of IoT such as fast 
mobility, fast deployment, easy programmability and scalability and 
applications for future IoT systems make it an excellent solution for 
understanding the architecture of future IoT systems. 

With the rapid rise in the number of healthcare sensors, researchers 
are increasingly interested in supporting a wide range of exciting new 
applications and scenarios. IoT consists of many devices connected with 
different types of sensor support, especially for the detection of medical 
health standards [21]. More commitment means less power consump-
tion and longer waiting time for packets in the queue. Delays increase in 
the process of collecting high-quality data. The discarded packets are 
sent before expiration, which leads to increased power consumption 
[21–24]. Also, many uncoordinated beams are likely to drop due to 
channel issues such as high beam and mid-air impacts.Broadcast ag-
gregation improves power ingesting and quality of provision during the 
data collection process. Aggregation sends multiple packets with 
maximum aggregation achieved by QoS constraints [25]. In data ag-
gregation, the maximum number of packets is combined into a single 
packet. Security is key factor in enabling widespread adoption of IoT 
technologies and applications [26]. Without privacy, reliability, and 
privacy, IoT solutions are unlikely to gain mass adoption. IoT is char-
acterized by diversity and connectivity with limited resources, making it 
a powerful Internet. Blockchain with IoT devices are essential to provide 
an end-to-end secure connection between IoT entities [27,28,40]. One of 
the main challenges resulting from the quick spread of the network of 
things is the node density that contains large amounts of data in different 
networks, which affects the probability of collision and network over-
crowding [29]. Current clustering techniques have solved these prob-
lems by ignoring the characteristics and types of IoT traffic [21–30]. 
Existing solutions suffer from additional storage, communications and 
energy costs [41]. Recently, many data integration projects have 
introduced the data integration process to increase its efficiency and 
makes process more accurate. However, these methodsare used for 
specific application environments, which make design difficult. The 
main objectives of our CRDA scheme are given as follows. 

1. New data combination scheme is used to improve the energy effi-
ciency, data transmission rate, increase network lifetime with min-
imum delay and transmission of data efficiently  

2. The network cluster integration model ensures QoSand reduces 
traffic congestion.To increase the network lifetime using reliable 
transmission ofdata  

3. To validate proposed scheme using different real-time IoT requests 
such as smart city, E-healthcare, E-agriculture, E-education, and etc. 

3.1.1. Network model 
Fig. 1 displays the network model of our proposed CRDA system with 

the sample network model which used to increase network lifetime, 
accomplish traffic information load balance and decrease reproduction 
mistake. First, an MSC algorithm is used to form the efficient balanced 
clustering geometry based on the IoT nodes information, such as node 
location and distance between base station to corresponding target 
node.In each group, the proposed plot considers CH determination as a 
dynamic issue formed in view of numerous standards, for example, en-
ergy consumption, link quality, path loss, distance from base station and 
delay. Then, the multiple design metrics are optimized through ISFO 
algorithmto find solution to the conclusion problem. Besides, ROL-DNN 
technique is then used to calculate bestoptimum path between IoT nodes 
which ensures reliable data aggregation and transferring. Our repro-
duction results show that the proposed strategy beats existing gauge 
methods in decreasing energy utilization and expanding network 
lifetime. 
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4. Proposed methodology 

In this section, we designate the working processing of our proposed 
CRDA structure with proper mathematical model which consist three- 
fold process are clustering, CH selection and optimal path computation. 

4.1. Cluster formation 

The creation of energy-efficient becomes crucial since IoT nodes are 
energy-constrained and run on a small internal battery. In order to 
prepare for impending demand, energy conscious IoT networks must 
simultaneously forecast their energy use. A collection of sensor nodes 
that can sense, calculate, and transmit make up the network. Energy 
conservation in IoT becomes a major concern to increase network life-
time. Since clustering is regarded as an efficient and suitable way for 
transmitting the data without any issues, multiple efforts have been 
made to improve the routing protocols in the network to date. For 
clustering purpose, in this work, we utilized a monarch and sine-cosine 
(MSC) algorithm for cluster formation which groups IoT sensors to 
ensure the energy efficient data aggregation and transfer. The proba-
bility q ∈ [0, 1] of the MSC algorithm that a migrant encounters a life- 
threatening situation depends on two main factors: fatigue, peripheral 
navies (storms, predators, individuals, birds and etc.) equal probability. 
For optimal problematic, the fitness of the answer is relative to the value 
of the impartial function. Founded on these rules the main steps of MSC 
are shown in the procedure. Time-compensated sun compass y(s+1)

j in-
formation is used to create a new position, 

y(s+1)
j = y(s)j +α× δs (1) 

The δs step size is the light strength used in a sun range or the 
attractive field strength used in attractive scope. After a dangerous 
condition occurs, a portion of the migratory populace dies. With the 
existence of the fittest in mind, we select the worst people as victims. 
New immigrants are created to fill the void in the population. A new 
migrated yj(New) with strong magnetic susceptibility is produced from 
randomly selected individual yj, 

yj(New)= yj ⊕ γ ⊗ η (2) 

The size of the leap η relies upon the force of the attractive field. α 
and γ > 0 mean the inquiry size of step size or bounce size, contingent 
upon the issue we are thinking about. Taking into account the earth as 
an attractive dipole with attractive second M and exiled person in wide 
position, the brilliant force (J) and attractive power not set in stone. 

J= JoE− Vr (3)  

A=
μ0

4π
m
D3 (4)  

where is the underlying light power, V is the light ingestion coefficient, 
and R is the separation from the source; and vacuum penetrability, D is 
the upward separation from the attractive dipole. 

J(v)=U ∼ exp(R) (5)  

A(D)=V ∼ lo max(λ, 2) (6) 

The J(V) tracks an exponential distribution and A(D) follows a 
Lomax or Pareto type II circulation. Therefore, the final form of the 
optimization reckoning is given as follows: 

y(s+1)
j =

⎧
⎨

⎩

y(s)j + α× u, if rand ≤ β,

y(s)j + α× v, otherwise;
(7) 

The above reckoning (Equation (5)) shows that the steering of 
monarch refugees is a Markov chain (MC) process where the next state 
(y(s+1)

j ) depends only on the current state (y(s)
j ) and the step size is finite. 

Sine-cosine calculation (SCA) is a gathering of calculations as of late 
presented by Mirza, and he likewise proposed a few multitude proced-
ures like dark wolf streamlining and whale improvement. SCA follows 
the very idea as other help strategies in that it comprises of an under-
lying populace of irregular possible arrangements, and afterward this 
underlying populace is refreshed in view of a bunch of conditions until it 
meets a halting basis. SCA uses the sine equation or the cosine equation 
to update the individuals (possible solution). This modified state pro-
vides the learning and exploitation of global optimization depending on 
the current state and some random numbers. 

Fig. 1. Network model of proposed CRDA scheme.  
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eS =
1
NS

∑N

j=1

(
lrj − lcj

)2
(8)  

where eS is the average error between the true lrj and lcj the estimated and 
is the true and j-th peak load, respectively, and N is the total number of 
data in the set. In SC-DA, the state of each agent is initialized as follows. 
In the next iteration, the agents’ states are updated with the following 
two equations with some probabilities: 

Ys+1
j =

{Ys
j + D1 sin(D2)

⃒
⃒
⃒D3ws

j − Ys
j

⃒
⃒
⃒,D4 < D

Ys
j + D1 cos(D2)

⃒
⃒
⃒D3ws

j − Ys
j

⃒
⃒
⃒,D4 ≥ D

(9)  

where Ys+1
j is the ongoing place of the jth layered arrangement at theds- 

th iteration; D2 random number from 0 to 2π; D3 and D4 are two uni-
formly distributed random numbers in the range [0, 1]; D is the 
threshold, which is set to 0.5; Excellent solution level; The equation D1 is 
shown as follows 

D1 = b − b
s
S

(10)  

where a is constant (0, 2); s characterizes the current number of repe-
titions and S represents the maximum number of iterations. The steps 
complicated in the MSC based cluster formation are described in Algo-
rithm 1.   

4.2. CH selection and data aggregation 

4.2.1. Design constraints for trust degree computation 
Next, we utilize multiple design constraints for node trust degree 

computation, energy efficiency, link quality, path loss, distance between 
target node to base station and aggregation delay. Energy consumption 
is a major concern in the design of routing protocol. Energy ingesting 
and reduction in sensor nodes can be caused by a variety of factors, 
including routing, making bad or complicated path choices, meddling, 
path loss, and bit error rate. It is challenging to refresh or substitute the 
series of the sensor nodes in these networks because of the internal 
placement of the sensor nodes in the human body. Minor or complicated 
surgery is the only option for changing the internal sensor matrix.The 
sensor node with the highest power will be the next forward data 
propagator for determining the energy level. The energy level of a sensor 
node is described as follows: 

Tnr− energy = TnB− energy − Tnc− energy (11)  

where, Tnr− energy presents the senor node residual energy, TnB− energy 

average energy and C-energy consumed energy. 

Tnc− energy = SAb × Tns− energy + rAa × Tnr− energy (12)  

where Ab , rAa are transmitted and received bits in sensors also, Tns− energy 

mean the all out worth of received and transmitted energy. 

TnS− energy = TnSn− energy + TnSB− energy × dis (13)  

Tnr− energy = TnSn− energy (14)  

TnSn− energy and TnSB− energy provide the transmitter with the necessary 
energy. ‘d’ is the coldness among the next forwarder and the source 
node, and energy refers to the transmitter amplifier with the necessary 
Sn-energy and SB-energy. The connection quality is the next charac-
teristic to be calculated after the power level, and it is used to gauge how 
well data is transferred. 

lP=

{
1
0
lqamax − lqai

lqamax

f lqai > lqaoptimal
if lqaworst > lqai < lqaoptimal
if lqai > lqaworst

(15) 

Lqaoptimal and Lqaworst are utilized for associated and detached states. 
Besides, these limits additionally ordered into connect I for separated. 
Whenever the beneficiary (rvj) sensor hub gets a bundle (lqai) or not 
exactly Lqaworst or this is grouping into associated connect (lqai) when 

worth is higher than Lqaoptimal or, this is characterizing into momentary 
for (lqai) range among Lqaoptimal and Lqaworst. At the point when remote 
correspondence happens then there is path loss. 

Ql(F,d) =Qlo + 10N log10
d
do

+ T (16) 

Qlo is the way misfortune at a reference distance and is numerically 
characterized as 

Qlo = 10 log10

[
4πdF
C

]2

(17) 

Update the fitness value of Qlo. 

Ql(F,d) = 10 log10

[
4πdF
C

]2

+ 10N log10
d
do

+ T (18) 
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In the distance boundary with numerical model, Fdist(q) indicates the 
distance among two ordinary hubs. Fdist(p) shows the distance between 
target node and CH of organization. The best maximum optimal solution 
of Fdist(p) ought to be inside the range [0, 1]. 

Fdist =
Fdist(p)
Fdist(q)

(19)  

Fdist(p)=
∑l

j=1

∑m

i=1

⃦
⃦dj − CHi‖+‖CHi − At

⃦
⃦
⃦
⃦
⃦ (20)  

Fdist(q)=
∑l

j=1

∑m

i=1

⃦
⃦dj − di

⃦
⃦ (21a) 

Specifies the data aggregation delay of the nodes, where the delay 
value should be in the range [0, 1]. Reducing the number of nodes in 
cluster also reduces the resulting latency. CH represents the numerator 
value and each node range represents the denominator value. 

Fdelay =

max(CHi)
M

i=1

l
(22a)  

4.2.2. Design metric optimization 
In data aggregation phase, we utilize the multiple design metrics to 

compute the trust degree of each IoT sensors and design an improved 
sunflower optimization (ISFO) algorithm to optimize the design con-
straints. The highest trust degree owned node is act as CH of the cluster 
which ensures data aggregation. Based on our objective, we formulate 
the following optimal function for decision making. 

TD=min
(
Tnenergy,LP,Edist,Fdelay) ∪ max

(
QIF,d

)
(23a) 

In general, sunflower optimization (SFO) procedure is used to find 
the best orientation to the sun, taking into account the special nature of 
sunflowers. In SFO procedure, the fertilization process is replicated 
based on random seed production considering the minimum coldness 
among flower j and flower J+1. Though, each natural flower has mil-
lions of pollen gametes, and in order to obtain a fast answer in the 
optimization, the algorithm considers only one pollen gamete, which is 
reproduced individually for each sunflower. SFO algorithm is one of the 
latest evolutions of nature-inspired soft computing algorithms. The cycle 
of sunflowers is always the same: they wake up every day and come with 
the sun like the hands of a clock. In this study, we make changes in the 

fitness optimizations to update the basic SFO algorithm into improved 
sunflower optimization (ISFO) algorithm. In ISFO algorithm, define the 
travel in the opposite direction during the night and leave the next 
morning. The law of radiation governs the sunflower cycle. 

PY =
QY

4πR2
Y

(24a)  

where, PY is the heat intensity received by each sunflower (y); QY is the 
ideal individual RY is the distance between each individual solar energy 
and the current population. An inverse quadratic relationship between 
radiant heat and distance defines, 

T→=
Y∗ − YY

‖Y∗ − YY‖
, y= 1, 2, ..., nq (25a)  

where Y∗ is the ideal individual in the current population, YY denotes 
each solution, and nq is the proposed population size. The movement of 
the sunflower on the sun is represented as follows. 

Dy = λ.QY(‖YY + YY − 1‖)⋅‖YY +YY− 1‖ (26a)  

Here, λ is a finite constant associated with the inertial displacement of 
each sunflower; QY(‖YY +YY− 1‖) is the sunflowers are prone to polli-
nation. In ISFO algorithm, pollination takes place randomly, with short 
distances between each flower and the outgoing flower. As a result, 
sunflower pollination takes place in a new state, where sunflowers closer 
to the sun make small movements to develop local pollination, while 
other sunflowers move normally. Based on the above, the mechanism for 
updating the position of each sunflower is implemented by moving the 
sunflowers (DY) and their orientation to the sun (TY) as follows: 

YY+1 = YY + DY × TY (27a) 

ISFO algorithm is highly sensitive to two defined parameters: polli-
nation rate (QR) and mortality rate (M). This high sensitivity does not 
provide the best ability to detect sunflowers. Also, the inertial 
displacement of each sunflower is fixedly defined, which limits the 
search behavior of ISFO algorithm. Both of these controls do not support 
ISFO algorithm search checks. In this article, two modifications are 
proposed to overcome the limitations mentioned above. The first change 
suggests changing the pollination rate (QR) from fixed defined value to 
an adaptive value. 

QR= 0.5 ×

(

1 −
W

maxw

)

(28a) 

Table 1 
Summary of Research gaps.  

Ref. Year Methodology Technique used Parameter improved Research gaps 

[21] 2022 Secure data aggregation ANT-PSO-AODV Energy consumption, routing 
overhead 

However, it fails to handle data redundancy and has 
lower throughput. 

[22] 2019 Data aggregation for energy 
constrained IoT 

Laplacian eigen basis for weight 
adjacency matrix in data 
aggregation 

Throughput, packet delivery 
ratio 

Ignore the computationally complex energy 
efficiency aspect of the node. 

[23] 2022 Efficient data aggregation 
scheme 

I-LEACH Throughput, end-to-end delay High computational complexity due to LEACH 

[24] 2021 Fuzzy-based data aggregation Fuzzifcated LEACH Energy consumption, 
aggregation ratio 

Real-time implementation becomes expensive. 

[25] 2022 Secure and efficient 
multifunctional data 
aggregation 

Lightweight cryptographic 
technique 

Energy consumption, 
overhead, aggregation ratio 

Several aggregates determine the energy efficiency of 
data storage. 

[26] 2022 Cluster-based data aggregation βDSC2DAM Data aggregation time, average 
latency, end-to-end delay 

This scheme is built using point-to-point bilinear 
mapping and hash function operations, so it is not 
efficient. 

[27] 2019 FESDA Paillier crypto-system Energy consumption, 
aggregation ratio 

It depends solely on data protection principles 

[28] 2020 MMDA-IoT CNN Data aggregation time Not suitable for high density nodes. 
[29] 2021 Privacy preserving data 

collection (PPDC) 
Cluster based k-anonymity Execution time Heavy computational complexity and poor data 

utility 
[30] 2020 EMCA-CS CSMO-GWO Lifetime, energy consumption Affected by data dimensionality issues  
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It describes the coefficient vector (QR) decreasing linearly from 0.5 
to 0 iterations. The second variable describes the passive displacement 
(λ) corresponding to each sunflower. 

λ=(ua − la) ×
(

1 −
W

maxw

)

(29a)  

Here ua and la are the upper and lower bounds of the decision variables. 
W is the current iteration. In this case, to establish equilibrium between 
search and misuse in the algorithm, the search starts with a high devi-
ation search, and in the final step it explorations locally in the search 
space. This progression is designed as shadows 

z⇀
New
j+1 =

⎧
⎪⎪⎨

⎪⎪⎩

z⇀j+1 + γ × Tj × d
⇀
j × F

(

z⇀j+1

)

, rand > 0.5

z⇀j+1 − γ × Tj × d
⇀
j × F

(

z⇀j+1

)

, rand ≤ 0.5
(30a) 

Applying this system to the total quantity of plants, the subsequent 
improved version of fitness is describe as follows: 

nNewq+1 = nNewq + βj × nNewq (31)  

βj+1 = 4 ×
(
βj − β2

j

)
(32)  

where, βj designates the value for the j-th chaotic repetition, and the 
Initial value βj designates a random value in the range 0 and 1. The 
working steps involved in the design constraints optimization and CH 
selection is given in Algorithm 2.   

4.3. 4.3 optimal path computation 

After data aggregated in CH nodes, the data should transfers between 
two IoT nodes which need energy efficient and high network lifetime. 
Traditional sensor network platforms were created with a focus on en-
ergy consumption at the expense of communication throughput.To 
collect aggregated data, this has high transmission throughput and low 
delay to reach destination end.According to the investigation, conven-
tional path selection algorithm fails to deliver improved data transfer 

with respect to quality of service (QoS), which happens because of 
inefficient data aggregations. They also fail to extend the network life-
time and reduce energy depletion.In order to ensure optimal data 
transfer between CHs, we introduce reformative optimal–learning-based 
deep neural network (ROL-DNN) technique which compute optimal 
path between source and destination.The ROL-DNN technique considers 
the solution population as a group of learners who learn in two main 
stages: learning between teachers; and student-generated learning from 
peer interactions. The difference between the means for each student is 
calculated using the initial population created with the best study var-
iables. This helps update the underlying populace of the instructor 
matrix 

Diff in meani,g,j =Kj ×
(
Qi,kbest,j − Mf − Mf × si,j

)
(21b) 

A Kj student’s best performance in subject j is a random number 
between 0 and 1 and Qi,kbest, TF is a teaching factor between 1 and 2 that 
can be calculated using. 

Ff = round
[
1+ rand(0, 1) (22b) 

For specimen, if the accidental value is 0.5, then Sf = 2. Likewise, if 
random worth is 0 then Sf = 1 

Q′

i,g,j =Qi,g,j + diff in meani,g,j (23b)  

where Q′

i,g,j is the effective worth of Qi,g,j. It is utilized to refresh the 
arrangement got from the underlying populace. New wellness values 
were gotten and contrasted and the wellness upsides of the underlying 
populace. The best wellness values are passed to the student stage as 
starting values.This finishes the instructor phase.Consider two haphaz-
ardly chosen students P and Q, separately, 

Q′′
i,q,j =Q′

i,q,j +Kj ×
(
Q′

i,q,j − Q′

i,q,j

)
if Q′

total q,j <Q′

total P,j (24b)  

Q′′
i,q,j =Q

′

i,q,j +Kj ×
(
Q

′

i,q,j +Q
′

i,q,j

)
if Q

′

total q,j <Q
′

total P,j (25b) 

DNN can use their internal state to process variable-length input 
sequences. ROL-DNNcan be thought of as multiple replicas of the same 
network, each sending a message to its successor. They can relate 
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previous information to the current task. However, when this gap in-
creases, DNN cannot learn to integrate information. The short-term 
memory problem of DNNis that short-term memory has high influ-
ence, but long-term memory has little influence. The main reason is that 
the structure of ROL-DNN allows information to be passed each time gs. 

k(m)s = σ
(
Z(m)
s ⋅

[
k(m)s− 1, y

(m)
s

]
+V(m)

s k(m)s− 1 +A(m)
f

)
(26b) 

However, one of the problems with simple ROL-DNNis that end 
nodes are too weak to extract information from time nodes at large in-
tervals. ROL-DNN offers a solution to the long-term bias problem by 
using a gating system to control information flow and loss. The network 
is trained using dynamic back propagation. It is a gradient descent 
learning algorithm based on the assumption that the initial state of the 
network is independent of the initial weights. Let’s d(m+1) specify the 
target value of the network (s + 1). Defined as the network error at that 
time (s + 1). 

E(s+ 1)= d(m+ 1) − x(s+ 1) (27b) 

The network cost function is the squared error between the actual 
values and the predicted values given by the following equation: 

I(m+ 1)=
1
2
[E(m+ 1)]2 (28b) 

For all nodes in the current stack, the cumulative output error time is 
compute using iteration as follows: 

eK = 1
/Mtr

∑Mtr

j=1
oj − zKj (29b)  

where zKj the kth node w represents the output with respect to j-th data 
value. Mtr is a training set. Calculate weight changes and update the 
weight value.   

The purpose of ROL in DNN is to determine and optimize the loss 
function, i.e. the objective function, by adding weak learners using 
gradient descent optimization method and arbitrary differentiable loss 
functions. ROL seeks to reduce its formal scope to: 

obj(θ) =
∑

j
l
(

x⌢j, xj
)

+
∑

K
Ω(FK),FK ∈ f (30b)  

where, Ws is the information about previous iterations which sent to the 

current state. Algorithm 3 describes the steps involved in the optimal 
path computation for data transfer using ROL-DNN technique. 

5. Results and comparative analysis 

In this segment, we validate our future cluster based reliable data 
aggregation (CRDA) scheme with the different simulation scenarios are 
impact of node density and simulation rounds. The entire simulation is 
carried in Network Simulator (NS2) tool. The simulation results of 
proposed CRDA plot is contrasted and the current condition of- 
workmanship plans, upgraded edge delicate stable political race 
convention (ETSSEP) [33], stable energy productive bunching conven-
tion (SEECP) [32], dependability Improved-Drain (SILEACH) [31] and 
effective multi-jump cluster based collection (EMCA-CS) [30]. The 
presentation of proposed and it are investigated through the different to 
exist plans measures are energy consumption, aggregation delay, 
network lifetime, throughput, overhead and data transfer rate (see 
Table 1). 

5.1. Simulation setup 

The sink is situated in the centre of a terrain measuring 1000 m by 
1000 m, where the nodes are situated. A grid of 100 nodes is created, 
and the remaining 900 are distributed at random. The sensor node’s 
transmission and reception power consumption are 24.92 and 19.72 mJ 
per byte, respectively, according to the simulation requirements. IoT 
sensors come in a variety of numbers, ranging from 200 to 1000. Each 
sensor node and each gateway are assumed to have a starting energy of 

Table 2 
Simulation setup.  

Parameters Values 

Simulation Area 1000 m × 1000 m 
Number of IoT sensors 200–1000 
Data size 4000 bits 
Control packet size 200 bits 
Senor sensing range 80 m 
Initial energy of sensor nodes 2J 
MAC protocol CSMA/CA 
Bandwidth 250 kb/s 
Payload size 30 bytes 
Transmission range 100 m 
Avg. energy consumption of transmitting node 24.92 mJ per byte 
Avg. energy consumption of receiving node 19.72 mJ per 1 byte 
Simulation time 30 times  
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Table 3 
Comparative analysis of proposed and existing data aggregation schemes with node density.  

Data aggregation schemes Energy consumption (J) Aggregation delay (s) Network lifetime (%) 

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 

ETSSEP 589.25 748.23 769.48 847.98 897.36 15.26 20.58 31.45 45.89 59.78 56.23 45.24 42.78 40.15 38.45 
SEECP 465.80 624.78 646.03 724.53 773.91 13.81 19.13 30.00 44.44 58.33 67.12 56.13 53.67 51.04 49.34 
SILEACH 342.35 501.33 522.58 601.08 650.46 12.36 17.68 28.55 42.99 56.88 78.01 67.02 64.56 61.93 60.23 
EMCA-CS 218.90 377.88 399.13 477.63 527.01 9.91 15.23 26.10 40.54 54.43 88.90 77.91 75.45 72.82 71.12 
CRDA 95.45 254.43 275.68 354.18 403.56 4.46 9.78 20.65 35.09 48.98 99.79 88.80 86.34 83.71 82.01  

Data aggregation schemes Throughput (Mbps) Overhead (%) Data transfer rate (%) 

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 

ETSSEP 7456 6458 5632 4785 4247 60.25 65.45 69.78 72.34 75.03 72.15 71.45 70.35 68.79 67.32 
SEECP 7811 6813 5987 5140 4602 57.65 62.85 67.18 69.74 72.43 78.04 77.34 76.24 74.68 73.21 
SILEACH 8166 7168 6342 5495 4957 55.05 60.25 64.58 67.14 69.83 85.93 85.23 84.13 82.57 81.1 
EMCA-CS 8521 7523 6697 5850 5312 44.46 49.66 53.99 56.55 59.24 92.82 92.12 91.02 89.46 87.99 
CRDA 8876 7878 7052 6205 5667 27.86 33.06 37.39 39.95 42.64 99.71 99.01 97.91 96.35 94.88  

Fig. 2. Results of energy consumption with node density.  

Fig. 3. Results of aggregation delay with node density.  

Fig. 4. Results of network lifetime with node density.  

Fig. 5. Results of throughput with node density.  

Fig. 6. Results of overhead with node density.  

Fig. 7. Results of data transfer rate with node density.  

G. Ravi et al.                                                                                                                                                                                                                                     

927



Measurement: Sensors 27 (2023) 100744

10

2J. Each node communicates with the others via the CSMA/CA MAC 
layer protocol. To send the data packets to the gateways, the sensor 
nodes employ the TDMA that the BSs choose. The IoT sensor nodes’ 
transmission range is 100 m, and the data packet size is 4000 bits. The 
simulations are run 30 times, and the accompanying graph shows the 
typical outcome of the runs. Table 2 describes the summary of simula-
tion setup. 

5.2. Comparative analysis 

5.2.1. Impact of IoT nodes 
The purpose of the section is to validate the performance of proposed 

and existing data aggregation schemes with the following simulation 
setup, node density of 200–1000 and a fixed network area of 1000 ×
1000 m2. Our CRDA arrangement is associated with existing state-of- 
the-art ETSSEP [33], SEECP [32], SILEACH [31] and EMCA-CS [30] 

Fig. 8. Results of energy consumption with simulation rounds.  

Fig. 9. Results of aggregation delay with simulation rounds.  

Fig. 10. Results of network lifetime with simulation rounds.  

Fig. 11. Results of throughput with simulation rounds.  

Fig. 12. Results of overhead with simulation rounds.  

Table 4 
Comparative analysis of propose and existing data aggregation schemes with simulation rounds.  

Data aggregation schemes Energy consumption (J) Aggregation delay (s) Network lifetime (%) 

500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500 

ETSSEP 578.69 737.67 758.92 837.42 886.80 9.70 15.02 25.89 40.33 54.22 45.67 34.68 32.22 29.59 27.89 
SEECP 455.24 614.22 635.47 713.97 763.35 8.25 13.57 24.44 38.88 52.77 56.56 45.57 43.11 40.48 38.78 
SILEACH 331.79 490.77 512.02 590.52 639.90 6.80 12.12 22.99 37.43 51.32 67.45 56.46 54.00 51.37 49.67 
EMCA-CS 208.34 367.32 388.57 467.07 516.45 4.35 9.67 20.54 34.98 48.87 78.34 67.35 64.89 62.26 60.56 
CRDA 84.89 243.87 265.12 343.62 393.00 1.90 4.22 15.09 29.53 43.42 89.23 78.24 75.78 73.15 71.45  

Data aggregation schemes Throughput (Mbps) Overhead (%) Data transfer rate (%) 

500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500 

ETSSEP 7446 6448 5622 4775 4237 49.69 54.89 59.22 61.78 64.47 61.59 60.89 59.79 58.23 56.76 
SEECP 7801 6803 5977 5130 4592 47.09 52.29 56.62 59.18 61.87 67.48 66.78 65.68 64.12 62.65 
SILEACH 8156 7158 6332 5485 4947 44.49 49.69 54.02 56.58 59.27 75.37 74.67 73.57 72.01 70.54 
EMCA-CS 8511 7513 6687 5840 5302 33.90 39.10 43.43 45.99 48.68 82.26 81.56 80.46 78.90 77.43 
CRDA 8866 7868 7042 6195 5657 17.30 22.50 26.83 29.39 32.08 89.15 88.45 87.35 85.79 84.32  
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schemes in Table 3. A comparison of existing and proposed aggregation 
schemes for energy consumption is shown in Fig. 2. In CRDA scheme, we 
achieve 64.092%, 57.24%, 47.158%, and 30.854% lowerenergy con-
sumption than those of the existing ETSSEP [33], SEECP [32], SILEACH 
[31], and EMCA-CS [30] schemes. A comparison of existing and pro-
posed aggregation schemes for aggregation delay is shown in Fig. 3. In 
CRDA scheme, we achieve31.221%, 28.212%, 24.927% and 18.638% 
loweraggregation delay than those of the existing ETSSEP [33], SEECP 
[32], SILEACH [31], and EMCA-CS [30] schemes. A comparison of 
existing and proposed aggregation schemes for network lifetimeis shown 
in Fig. 4. 

In our CRDA scheme, we achieve49.427%, 37.07%, 24.713%, and 
12.357% higher network lifetime than those of the existing ETSSEP 
[33], SEECP [32], SILEACH [31], and EMCA-CS [30] schemes. A com-
parison of existing and proposed aggregation schemes for throughput is 
shown in Fig. 5. In our CRDA scheme, we achieve 19.9%, 14.925%, 
9.95% and 4.975% higher throughput than those existing ETSSEP [33], 
SEECP [32], SILEACH [31], and EMCA-CS [30] schemes. A comparison 
of existing and proposed aggregation schemes for overhead is shown in 
Fig. 6. In our CRDA scheme, we achieve 47.239%, 45.162%, 42.913% 
and 31.45% minimum overhead than those of the existing ETSSEP [33], 
SEECP [32], SILEACH [31], and EMCA-CS [30] schemes. A comparison 
of existing and proposed aggregation schemes for data transfer rates 
shown in Fig. 7. In our CRDA scheme, we achieve 28.246%, 22.209%, 
14.123% and 7.061% maximum data transfer rate than those of the 
existing ETSSEP [33], SEECP [32], SILEACH [31], and EMCA-CS [30] 
schemes. 

Our CRDA scheme has been shown to improve performance with 
increasing node density in IoT networks. IoT nodes enable wireless 
connections between objects, but their small size, limited battery life, 
and resource constraints make handling the large amounts of data they 
generate a challenge. To address these constraints, many researchers 
have focused on optimizing energy consumption to extend network 
lifetime. However, these methods often result in reduced throughput 
and do not effectively handle data redundancy. Our CRDA scheme ad-
dresses these issues by eliminating data redundancy and conserving 
energy. From this comparative analysis, we conclude that the perfor-
mance of our CRDA scheme is improved with respect to node density. 

5.2.2. Impact of simulation rounds 
The purpose of the section is to validate the performance of data 

aggregation schemes with the following simulation setup, simulation 
rounds as 500 to 2500 and a fixed number of nodes as 500. Our proposed 
CRDA arrangement is associated with existing state-of-the-art ETSSEP 
[33], SEECP [32], SILEACH [31] and EMCA-CS [30] schemes in Table 4. 
A comparison of existing and proposed aggregation schemes for energy 
consumption is shown in Fig. 8. In our CRDA scheme, we achieve 
67.813%, 61.243%, 51.301% and 34.5% lower energy consumption 
than those of the existing ETSSEP [33], SEECP [32], SILEACH [31], and 
EMCA-CS [30] schemes. A comparison of existing and proposed 

aggregation schemes for aggregation delay is shown in Fig. 9. In CRDA 
scheme, we achieve 44.25%, 40.44%, 36.07% and 27.35% lower ag-
gregation delay than those of existing ETSSEP [33], SEECP [32], 
SILEACH [31], and EMCA-CS [30] schemes. A comparison of existing 
and proposed aggregation schemes for network lifetime is shown in 
Fig. 10. 

In our CRDA scheme, we achieve 55.07%, 41.302%, 27.535% and 
13.767% higher network lifetime than those of the existing ETSSEP 
[33], SEECP [32], SILEACH [31], and EMCA-CS [30] schemes. A com-
parison of existing and proposed aggregation schemes for throughput is 
shown in Fig. 11. In our CRDA scheme, we achieve 18.952%, 14.214%, 
9.476% and 4.738% higher throughput than those of the existing ETS-
SEP [33], SEECP [32], SILEACH [31], and EMCA-CS [30] schemes. A 
comparison of existing and proposed aggregation schemes for overhead 
is shown in Fig. 12. In our CRDA scheme, we achieve 57.434%, 
55.377%, 53.111% and 40.882% minimum overhead than those of the 
existing ETSSEP [33], SEECP [32], SILEACH [31], and EMCA-CS [30] 
schemes. A comparison of existing and proposed aggregation schemes 
for data transfer rate is shown in Fig. 13. In our CRDA scheme, we 
achieve 31.431%, 24.713%, 15.715% and 7.858% maximum data 
transfer rate than those of the existing ETSSEP [33], SEECP [32], 
SILEACH [31], and EMCA-CS [30] schemes. To alleviate the growing 
network traffic in IoT applications, there is a need for systems that can 
reduce data transmission flux due to inherent sensor constraints. Pre-
diction and data aggregation techniques, as described in Refs. [30–34], 
offer promising solutions for meeting this requirement, especially for 
forecasting processes that require large amounts of data collection, 
transmission, and recording. However, these solutions face challenges 
with communication overhead when integrating IoT with other tech-
nologies. Our CRDA scheme has been shown to effectively address this 
issue by reducing communication overhead in simulation. 

6. Conclusion 

We have planned a cluster based reliable data aggregation (CRDA) 
scheme for IoT network which ensures data collection and aggregation 
as energy efficient manner and transfer to another end very effectively. 
An MSC algorithm is used for clustering which groups the IoT sensor 
which ensures the effective data transferring. The multiple design met-
rics are used to compute the trust degree of each IoT sensors and ISFO 
algorithm is used to optimize design constraints and compute CHs. ROL- 
DNN technique is then introduced to compute routes between IoT sen-
sors which ensures reliable data aggregation and transferring.From the 
simulation results, we observed that the energy ingesting of our 
CRDAsystem is 49.836% and 51.872% efficient than the existing data 
aggregation schemes with respect to impact of nodes and simulation 
rounds, respectively. The aggregation delay of our CRDA scheme is 
25.75% and 37.283% efficient than the existing data aggregation 
schemes with respect to impact of nodes and simulation rounds, 
respectively. The network lifetime of our CRDA scheme is 30.892% and 
34.712% efficient than the existing data aggregation schemes with 
respect to impact of nodes and simulation rounds, respectively. The 
throughput of proposedCRDA scheme is 12.438% and 15.889% efficient 
than the existing data aggregation schemes with respect to impact of 
nodes and simulation rounds, respectively.The overhead of propo-
sedCRDA scheme is 41.691% and 51.115% efficient than the existing 
data aggregation schemes with respect to impact of nodes and simula-
tion rounds, respectively. The data transfer rate-of proposedCRDA 
scheme is 17.91% and 22.34% efficient than the existing data aggre-
gation schemes with respect to impact of nodes and simulation rounds, 
respectively.Our simulation results demonstrate that proposed CRDA-
scheme extends network lifetime, decreases energy consumption, and 
improves quality of service. Going forward, we plan to extend our pro-
posed CRDA scheme for real-time applications such as E-learning, smart 
agriculture, and smart healthcare. This will ensure reliable data transfer 
and we will also validate it with a new cryptographic technique. 

Fig. 13. Results of data transfer rate with simulation rounds.  
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Cloud computing, is a widely accepted utility
computing model. All the application processing
takes place in the cloud data center managed by the
cloud service provider. This includes network
latency and delays in processing. Each time the
application is executed, data has to be transported
from node to the cloud. This will increase network
tra�c and is practically not feasible to transport
data from node to remote cloud server and back.
Fog computing, a new paradigm of cloud computing
will help in overcoming this challenge. In fog
computing technology, the data processing tasks
are executed at the node level either completely or
partially, which highly increases the speed of
responses. Also, it reduces latency, processing
costs, and bandwidth problems, and improves the
e�ciency of customer driver services with better
response time. Fog is highly useful in locations
where network connectivity is an issue because fog
has a separate protocol suite that will support weak
network connections. In this article, the various
parameters of the fog computing paradigm such as
challenges, application, and opportunities are
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A B S T R A C T   

The Digital twins will duplicate the actual objects, create the virtual world and execute using IoT devices and 
Sensors. The Emergency Room Service (ERS) is a critical phase for patients in health condition evaluation, Digital 
Health records will help us in understanding the cause of illness, medical history will help us to start the 
treatment. The most challenging for ERS is anonymous person or unknown follow ups about patients. The 
proposed model (Emergency Service Room with Digital Twins), helps to treat a patient with fast-track service 
and reduce the length of Stay in ER. The risk factor of a patient’s life by reviewing the medical history of the 
patients through digital health records. This novel method will help doctors in treating patients by Computing 
Image Processing in face recognition of patients. The biometric used for authentication to access the cloud for 
digital health records. The communication system used to acknowledge the family, Insurance Company and 
expert adviser. The empirical results successfully proved the novel proposed idea with above 80% of success rate. 
We can build an intelligent expert system to collaborate the Digital Health Record, E-H-S, Expert Adviser, and an 
expert system in the future. In treating Anonym patients in the Emergency department.   

1. Introduction 

The role of digital twins (DT) to Autonomous business medical ap-
plications through digital devices. The function of DT includes - Moni-
toring Digital Twins, Imaginary Digital Twins, Predictive Digital Twins, 
Prescriptive Digital Twins and Recollection Digital Twins are controlled 
by the life cycle of the control module in the framework. Smart farming 
is an advanced and most required approach in farming. Digital Twins 
help to study the environment virtually. Dynamic actions are taken 
based on the intelligent decision taken by the Digital Twin framework 
designed using IoT devices, twining the devices in data acquisition, and 
data analysis on the system. The applications of smart farming like 
Livestock Farming, Planthouse, Dairy houses, Chemical-Free Farming 
and Agriculture Farming. The Digital Twin collaborates with different 
modules in the farming life cycle through the virtual world. In this Eu-
ropean IoF2020 project, six digital twins exist to analyze the current 
state, predict future actions, and monitor and some of application area 
are shown in Fig. 1 [1] and a list of medical applications using digital 

twins is discussed in Table 1. 
Identifying the Challenges in Digital Twins will help exploit the 

research world’s solutions. The first Challenge is that AI algorithms are 
used in digital twins and the block chain. Most of the AI methods are 
black-box in nature. The AI decision-making methods suffer from 
apprehensible logic clearness in the reasoning. The explained Artificial 
Intelligence is expected for trustworthiness [2]. It isn’t easy to collect 
data about physics and chemical info about food raw materials in the 
digital twins’ Challenge in the food safety industry. Adopting new 
technology in the existing system is also difficult. Much statistical 
calculation needs to be done to predict the values [3]. The Digital Twins 
challenge in Constructions is a comprehensive design model expected 
from design to execution in planning, model construction, monitoring, 
operation executions, and quality check management [4]. 

Recent Trends in Digital Twins: Digital twins are used in eliminating 
mistakes and defects (Poka Yoke) products in the manufacturing in-
dustry. The robot manufacturing products work in collaboration with 
digital twins and predict the failure of the equipment, failed execution, 
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