

DEPARTMENT OF CIVIL ENGINEERING

NPTEL EQUIVALENT COURSES FOR HONORS DEGREE-2023-2024

NPTEL EQUIVALENT COURSES

S.No.	Course ID	Course Name	Course syllabus
1	noc23- ce106	Earth Sciences for Civil Engineering (Hindi)	 Week 1: Module 1 : Introduction to Geosciences in Civil Engineering Module 2 : Plate Tectonics and Continental Drift Module 3 : Rock-forming Minerals and their properties Week 2: Module 1 : Rock-forming Minerals and their properties Module 2 : Rock types and their properties Week 3: Module 1 : Seismology and the internal Structure of the Earth Module 2 : Geological Structures Week 4: Module 1 : Introduction to Geological Hazards Module 2 : Environmental impacts of Geological hazards Week 5: Module 1 : Active faults and its related hazard in India Module 2 : Active faults Mapping and Applications

S.No.	Course ID	Course Name	Course syllabus
			 Week 6: Module 1 : Tsunami and related hazard Module 2 : Landslide and Subsidence Week 7: Module 1 : Landslide and Subsidence Module 2 : Flood and related hazard Module 3 : Groundwater Week 8: Module 1 : Applications of Earth Sciences in Civil Engineering Module 2 : Civil Engineering applications – geological considerations in Rivers Module 3 : Civil Engineering applications – geological considerations in Dams
2	noc23- ce107	Engineering Geology	 Module 4 : Civil Engineering applications – geological considerations in Tunnels Week 1: Advances in engineering geology, significance and kinds of geo-ground, geomorphology of river valley and mountainous regions and landforms. Week 2: Rock-water interaction, weathering, weathering indices, erosion, and deposition. Week 3: Engineering geological properties of rocks, concept of geological strata and geomechanical classification of rock strata. Week 4: Geological construction materials, deleterious rocks, and cement-aggregates reactions. Week 5: Engineering Geology of dams and forces acting on dams Week 6: Tunnels and methods of tunneling, treatment and anchoring of geological strata. Week 7: Effect of geological structures such as folds, faults, beddings, foliations and lineations on stability of dams foundation and tunnels Week 8: Rock-load/ground pressure, factors affecting ground pressure, method for determination of ground pressure, and support system. Week 9: Engineering geological investigations for roads and highways, bridges and buildings foundations Week 10: Engineering Geological Natural hazards and mitigations: landslide, earthquakes and induced seismicity

S.No.	Course ID	Course Name	Course syllabus
			Week 11: Geomorphology of sea and sea shore, shoreline engineering geology, hazards and mitigation Week 12: Engineering geological aspects of geothermal energy, Coal bed methane (CBM), Gas hydrate, shale gas, Carbon Capture, Usage and Storage (CCUS).
3	noc23-ce57	Mechanics of Materials	 Week 1: Mathematical Preliminaries Week 2: Concept of Force, Displacement and stress Week 3: Transformation of stress and equilibrium equation Week 4: Concept of strain Week 5: Governing equations in mechanics Week 6: Displacement due to uniaxial loading, temperature and bending Week 7: Stresses and deflection in homogeneous beams loaded about one principal axis Week 8: Stresses and deflection in beams loaded about principal axis Week 9: Stresses and deflection in beams not loaded about principal axis Week 10: Stresses and displacement due to torsion Week 11: Pressure vessels and Failure criteria Week 12: Buckling
4	Noc23_ce63	Introductory Field Structural Geology	 Week 1: Basics and Ethics of Field Geology ; Tools and Equipments ; Geological Maps and features ; Locating yourself in the field ; Defining structural elements in the field Week 2: Primary structures ; Secondary structures ; Measurement and record of structural data; Sample collection ; Geometrical parameters of folds definition and measurements ; Fold geometries in outcrop scales Week 3: Superposed deformation ; Sequence of deformation from superposed fold patterns ; Ductile shear zones ; Shear Sense indicators ; Strain analysis from deformed markers Week 4: Brittle Deformation ; Analysing brittle deformation ; Mapping structural data ; Interpreting large-scale structures ; Summary & Conclusion
5	Nc23_ce64	Remote Sensing and GIS	Week 1 :Remote Sensing Data and CorrectionsWeek 2 :Satellite Image CorrectionsWeek 3 :Digital Image Processing-I

S.No.	Course ID	Course Name	Course syllabus
			Week 4 : Digital Image Processing-II
			Week 5 : Thermal and Microwave
			Week 6 : Imaging Spectroscopy-I
			Week 7 : Imaging Spectroscopy-II & GIS-I
			Week 8 : GIS-II and Application
			Week-1: Introduction to optimization
			Week-2: Linear Programming Problem
			Week-3: Classical Optimization methods
			Week-4: Classical Optimization methods
		Optimization Methods	Week-5: Classical Optimization methods Week-6: Classical Optimization methods
6	Noc23_ce67	for Civil Engineering	Week-0. Classical Optimization methods Week-7: Metaheuristic optimization methods
			Week-8:Metaheuristic optimization methods
			Week-9: Metaheuristic optimization methods
			Week-10:Engineering application using MATLAB and Excel solver
			Week-11:Engineering application using MATLAB and Excel solver
			Week-12: Civil Engineering Application
		Subsurface Exploration :Importance and Techniques Involved	Week 1: Importance of site investigation, Classification of investigations
			Week 2: Test Pits+ Borings, Ground water table and rock drilling, Standard
			Penetration Test
			Week 3: Cone Penetration test, Dilatometer Test, Pressuremeter Test
	Noc23_ce69		Week 4: Seismic refraction survey, Seismic reflection survey, Electrical Resistivity
7			Test, Magnetic anomaly test
			Week 5: Suspension logging test, Gravity test, Offshore and onshore investigations
			Week 6: Drill ships, barges, Jacket up platforms, positioning, Anchored structure,
			pipelines
			Week 7: Terminologies in Pile foundation
		Environmentel	Week 8: Pile drivability test, Pulse Echo Method (PEM)
8	Noo22 0074	Environmental	Week 1 : Introduction, Nature of Soil Week 2 : Natural and Manmade Environments
0	Noc23_ce71	Geomechanics	
			Week 3 : Physico-chemical Characterization of Soil

S.No.	Course ID	Course Name	Course syllabus
			Week 4 : Mineralogical Characterization of Soil
			Week 5 : Soil-water-air Interaction
			Week 6 : Shrinkage and Swelling
			Week 7 : Cracking Characteristics of Soil
			Week 8 : Hydraulic Conductivity
			Week 9 : Mass Transport Phenomena
			Week 10 : Thermal and Electrical Properties of Soils
			Week 11 : Thermal and Electrical Properties of Soils
			Week 12 : Applications
			Week 1:
			Module 1: Overview of urban transportation
			Lec. 1: Urbanization and Transport (0.5 hr.)
			Lec. 2: Key issues in urban transportation (0.5 hr.)
			Lec. 3: Challenges in urban transportation (0.5 hr.)
			Lec. 4: Travel demand modelling overview (0.5 hr.)
			Lec. 5: Vehicular Level of Service (LOS) overview (0.5 hr.)
			Week 2:
			Module 2: Public Transportation
		Introduction to	Lec. 6: Introduction to public transportation (0.5 hr.)
9	Noc23_ce75	Multimodal Urban	
Ŭ	10020_0010	Transportation	Lec. 8: Basic operating elements of public transportation (contd.) (0.5 hr.)
		Systems (MUTS)	Lec. 9: Bus Transportation (0.5 hr.)
			Lec. 10: Bus Transportation (contd.) (0.5 hr.)
			Week 3:
			Module 2: Public Transportation
			Lec. 11: Financing public transportation (0.5 hr.)
			Lec. 12: Transit marketing (0.5 hr.)
			Lec. 13: Rail transportation (0.5 hr.)
			Lec. 14: Intermediate Public Transportation (0.5 hr.)
			Lec. 15: Measuring performance of transit systems (0.5 hr.)
			Week 4:

S.No.	Course ID	Course Name	Course syllabus
			Module 2: Public Transportation
1			Lec. 16: Advanced operation concepts of public transportation (0.5 hr.)
			Lec. 17: Bus & amp; Rail Transit Capacity (0.5 hr.)
1			Lec. 18: Bus & amp; Rail Transit Capacity (contd.) (0.5 hr.)
1			Lec. 19: Station Capacity (0.5 hr.)
			Lec. 20: Transit Stop Location (0.5 hr.)
			Week 5:
			Module 3: Non-Motorised Transportation (NMT) Planning
			Lec. 21: Introduction to NMT Systems (0.5 hr.)
			Lec. 22: Assessing existing NMT scenario (0.5 hr.)
			Lec. 23: Data collection and analysis in NMT Planning (0.5 hr.)
			Lec. 24: Complementarity and Selection of Interventions (0.5 hr.)
			Lec. 25: Alternative Selection through Economic & amp; Financial Analysis (0.5 hr.)
			Week 6:
			Module 3: Non-Motorised Transportation (NMT) Planning
1			Lec. 26: Introduction to NMT systems (0.5 hr.)
1			Lec. 27: Basic NMT Characteristics (0.5 hr.)
			Lec. 28: Pedestrian Data Collection and Flow Characteristics (0.5 hr.)
			Lec. 29: PTS Case Studies Pedestrian flow characteristics on facilities (0.5hr.)
			Lec. 30: Pedestrian Level of Service (PLOS) based on Flow models (0.5hr.)
			Week 7:
			Module 3: Non-Motorised Transportation (NMT) Planning
			Lec. 31: Other types of Pedestrian Level of Service (PLOS) (0.5 hr.)
			Lec. 32: HCM 2010 Methodology for PLOS (0.5 hr.)
			Lec. 33: HCM 2010 Methodology for PLOS (contd.) (0.5 hr.)
			Lec. 34: Bicycle Facilities and Level of Service (BLOS) (0.5 hr.)
			Lec. 35: BLOS and Bicycle Compatibility Index (BCI) (0.5 hr.)
			Week 8:
			Module 3: Non-Motorised Transportation (NMT) Planning
			Lec. 36: NMT Design Principles (0.5 hr.)
			Lec. 37: Design of Pedestrian Infrastructure (0.5 hr.)

S.No.	Course ID	Course Name	Course syllabus
			Lec. 38: Design of Pedestrian Infrastructure (contd.) (0.5 hr.)
			Lec. 39: Design of Cycling Infrastructure (0.5 hr.)
			Lec. 40: Design of Cycling Infrastructure (contd.) (0.5 hr.)
			Week 9:
			Module 4: Urban Transport & amp; Sustainability
			Lec. 41: Travel Demand Management (TDM) overview (0.5 hr.)
			Lec. 42: Push measures cases (0.5 hr.)
			Lec. 43: Pull measure cases (0.5 hr.)
			Lec. 44: Parking Studies (0.5 hr.)
			Lec. 45: Transit Oriented Development (TOD) (0.5 hr.)
			Week 10:
l			Module 4: Urban Transport & amp; Sustainability
			Lec. 46: Introduction to Intelligent Transportation Systems (ITS) (0.5 hr.)
			Lec 47: ITS components, applications and communication (0.5 hr.)
			Lec. 48: ITS Architecture (0.5 hr.)
l			Lec. 49: Electronic Toll Collection (ETC) (0.5 hr.)
1			Lec. 50: Public Bicycle Sharing (PBS) System with ITS (0.5 hr.)
l			Week 11:
			Module 4: Urban Transport & amp; Sustainability
1			Lec. 51: Multimodal transportation (MMT) environment (0.5 hr.)
l			Lec. 52: Multimodal Level of Service (MMLOS) (0.5 hr.)
			Lec. 53: Multimodal Level of Service (MMLOS) (contd.) (0.5 hr.)
			Lec. 54: Design of multimodal transfer facilities (0.5 hr.)
			Lec. 55: Park & Ride (P&R) Facility Planning (0.5 hr.)
1			Week 12:
			Module 4: Urban Transport & amp; Sustainability
			Lec. 56: An Introduction to Pedestrian Road Safety and associated Risk Factors
			(0.5 hr.)
			Lec. 57: Road crash estimation and elements of predictive methods (0.5 hr.)
			Lec. 58: Predicting Vehicle-Pedestrian and Vehicle-Bicycle conflicts (0.5 hr.)
L			Lec. 59: Environmental Concerns of Urban Transport (0.5 hr.)

S.No.	Course ID	Course Name	Course syllabus
			Lec. 60: Sustainable strategies for Urban Transportation (0.5 hr.)
10	Noc23_ce78	Ground Improvement	Week-1: Introduction Week-2: Shallow Densification Week-3: Deep Dynamic Compaction Week-4: Rapid Impact Compaction Week-5: Vibrocompaction Week-6: Drainage and Dewatering Week-6: Drainage and Dewatering Week-7: Excavation and Replacement Week-8: Preloading and Vertical Drain for Densification Week-8: Preloading and Vertical Drain for Densification Week-9: Grouting Methods Week-10: Chemical Stabilisation Week-11: Soil Nailing and Ground Anchors Week-12: Use of Geosynthetics in Various Ground Improvement Problems
11	Noc23_ce82	Availability and Management of Groundwater Resources	
12	Noc23_ce89	Integrated Waste Management for A Smart City	Week 1: Introduction to Solid Waste Management Week 2: Municipal Solid Waste Characteristics and Quantities

Course ID	Course Name		Course syllabus
			Week 5: Disposal of Municipal Solid Waste: Landfill
			Week 6: Biochemical Processes and Composting
			Week 7: Energy Recovery from Municipal Solid Waste
			Week 8: Current Issues in Solid Waste Management and Review of MSW
			Management Status in First List of 20 Smart Cities in the Country
			Week 9: Construction and Demolition (C&D) Waste Management - Overview
			Week 10: C&D Waste – Regulation, Beneficial Reuse of C&D Waste Materials
			Week 11: Electronic Waste (E-Waste) Management – Issues and Status in India
			and Globally Wook 12: E-Waste Management Pules 2016 and Management Challenges
			Week 12: E-Waste Management Rules 2016 and Management Challenges Week 1: An Introduction to Sustainability Concepts and Life Cycle Analysis
			(Introduction, Material flow and waste management, What it all means for an
			engineer? Water energy and food nexus)
			Week 2: Risk and Life Cycle Framework for Sustainability (Introduction, Risk,
			Environmental Risk Assessment, Example Chemicals and Health Effects,
			Character of Environmental Problems)
			Week 3: Environmental Data Collection and LCA Methodology (Environmental Data
			Collection Issues, Statistical Analysis of Environmental Data, Common Analytical
Noc23_ce90	c23_ce90 C23_ce90 Concepts and Cycle Analysis		Instruments, Overview of LCA Methodology - Goal Definition, Life Cycle Inventory,
			Life Cycle Impact Assessment, Life Cycle Interpretation, LCA Software tools)
		Life	Week 4: Life Cycle Assessment – Detailed Methodology and ISO Framework
		2110	(Detailed Example on LCA Comparisons, LCA Benefits and Drawbacks, Historical
			Development and LCA Steps from ISO Framework)
			Week 5: Life Cycle Inventory and Impact Assessments (Unit Processes and System
			Boundary Data Quality, Procedure for Life Cycle Impact Assessment, LCIA in
			Practice with Examples, Interpretation of LCIA Results)
			Week 6: Factors for Good LCA Study (ISO Terminologies, LCA Steps Recap, Chemical Release and Fate and Transport, and Green Sustainable Materials)
			Week 7: Design for Sustainability (Environmental Design for Sustainability:
			Economic, Environmental Indicators, Social Performance Indicators, Sustainability
			Engineering Design Principles and Environmental Cost Analysis)
		Noc23_ce90 Sustainable Engineering Concepts and	Noc23_ce90 Sustainable Engineering Concepts and Life

S.No.	Course ID	Course Name	Course syllabus
S.No.	Course ID	Course Name	 Week 8: Case Studies (e.g., Odour Removal for Organics Treatment Plant, Comparison of Hand Drying Methods, Biofuels for Transportation, Kerosene Lamp vs. Solar Lamp, Bioplastic etc.). Week-1: Introduction to Global Navigation Satellite System (GNSS) How position is determined by the GNSS? (Part-I) How position is determined by the GNSS? (Part-II) How position is determined by the GNSS? (Part-III) NAVSTAR - Global Positioning System Week-2: Global Navigation Satellite System (GLONASS) BeiDou Navigation Satellite System (BDS) Indian Regional Navigation Satellite System (IRNSS)
13		5	NAVSTAR - Global Positioning System Week-2: Global Navigation Satellite System (GLONASS) BeiDou Navigation Satellite System (BDS) Indian Regional Navigation Satellite System (IRNSS) GALILEO Quasi-Zenith Satellite System (QZSS) Week-3: Differential Global Navigation Satellite System (DGNSS) REAL-TIME KINEMATIC (RTK) Satellite Based Augmentation System (SBAS)
			GNSS Errors GNSS Correction Methods Week-4: Why altitude estimated by GNSS receivers is not very accurate Global Navigation Satellite Systems (GNSS) Applications - I Global Navigation Satellite Systems (GNSS) Applications - II GNSS: Current Trends and Future GNSS: Opportunities in India

Head