MATLAB FOR MECHANICAL ENGINNERS<br>Instruction (Periods per week)<br>Duration of End Examination<br>2 Periods<br>3 Hours

| Module-1 | Basics of MATLAB, MATLAB windows, On-line help, Input-output, File types, <br> General commands should remember. Add, multiply, and exponentiation numbers, <br> use trigonometric functions; and control screen output with format.- | 2 H |
| :--- | :--- | :--- |
| Module-2 | Creating and Working with Arrays of Numbers, Creating and Printing Simple <br> Plots, Write and execute a script file, Write and execute a function file.- | 3H |
| Module-3 | Arrays and Matrices, Working with Anonymous Functions, Symbolic <br> Computation, Importing and Exporting Data, Working with Files and Directories, | 2 H |
| Module-4 | Publishing Reports.- <br> Matrices and Vectors, Matrix and Array Operations, Character strings, Command- | 3 H |
| Module-5 | Line Functions,- <br> Using Built-in Functions, Saving and Loading Data, Programming in MATLAB: | - |
|  | Scripts and Functions: Script Files, Function Files | 3 H |
| Module-6 | Applications: Linear Algebra, Curve Fitting and Interpolation, Numerical <br> Integration, Ordinary Differential Equations, Nonlinear Algebraic Equations.- | 2 H |
| Module-7 | Graphics: Basic 2-D Plots, Using subplot for Multiple Graphs, 3-D Plots, 3-D <br> Surface Graphics | 2 H |

## List of the Exercises-13H

1) Figure 1 shows a frame in which the structural members support the 5 kN load. The load may be applied at any angle $\alpha\left(-90^{\circ}\right.$ to $+90^{\circ}$ ). The pins at A and B need to be designed to support the maximum force transmitted to them. Write a MATLAB program to plot the forces at A and B as a function of $\alpha$ and find their maximum values and corresponding angles $\alpha$.


Figure. 1
2) In figure 2, the spring is un stretched when $\alpha=0$ and k is the spring constant. Write a MATLAB program to compute and plot the mass $m$ corresponding to equilibrium as a function of $\alpha$ for values of $\alpha$ from $0^{\circ}$ to $90^{\circ}$. Find the value of $\alpha$ corresponding to equilibrium $\mathrm{m}=2.5 \mathrm{~kg}$. Given $\mathrm{R}=210 \mathrm{~mm}, \mathrm{~d}=50 \mathrm{~mm}$ and $\mathrm{k}=1.2 \mathrm{kN} / \mathrm{m}$.


Figure. 2
3) Figure 3 shows a crank shaft mechanism where a couple $M$ is applied to the crank $A B$ to maintain the equilibrium of the system. The force applied to the system is F. Write a MATLAB program to plot the ratio of $\mathrm{M} / \mathrm{F}$ as a function of crank angle $\alpha$ from 0 to 180 degrees. Given $\mathrm{a}=50 \mathrm{~mm}$ and $\mathrm{A}=150 \mathrm{~mm}$. Determine the value of crank angle $\alpha$ for which the ratio $\mathrm{M} / \mathrm{F}$ is maximum and the corresponding value of $\mathrm{M} / \mathrm{F}$.


Figure 3
4) Figure 4 shows axle pulley system where the coefficient of friction between cable ABCD and the pulley varies between 0 and 0.60 . Write a MATLAB program to determine, (a) the values of $\alpha$ for the system to remain in equilibrium (b) the reactions at A and D (c) Plot $\alpha$ as a function of the coefficient of friction.


Figure 4
5) Figure 5 shows a safety bumper placed at the end of a racetrack to stop out-of-control vehicles. The force that the bumper applies to the vehicle is given by $\mathrm{F}=\mathrm{Kv}^{3}(\mathrm{x}+1)^{3}$ where $\mathrm{K}=32 \mathrm{~kg}-\mathrm{s} / \mathrm{m} 5$ (a constant) $\mathrm{x}=$ displacement of the front edge of the bumper $\mathrm{v}=$ velocity of the front edge of the bumper. A vehicle of mass 2000 kg hits the bumper at a speed of $100 \mathrm{~km} / \mathrm{h}$. Write a MATLAB program to determine and plot the velocity of the vehicle as a function of $x$ for $0 \leq x \leq 5 \mathrm{~m}$.


Figure 5
6) A 5 kg block is attached to a cable and to a spring as shown in Fig. 6. The constant of the spring is $\mathrm{k}=3 \mathrm{kN} / \mathrm{m}$ and the tension in the cable is 30 N . When the cable is cut,
(a) derive an expression for the velocity of the block as a function of its displacement x , (b) determine the maximum displacement $\mathrm{x} m$ and the maximum speed v m , (c) plot the speed of the block as a function of $x$ for $0 \leq x \leq x m$.


Figure 6
7) Figure 7 shows the slider crank mechanism. Write a MATLAB program that calculates and plots the position, velocity and acceleration of the piston for one full revolution of the crank. Assume that the crank is rotating at a constant speed of 550 rpm . Given radius of crank $=125 \mathrm{~mm}$ and radius of crank shaft $=250 \mathrm{~mm}$.

8) Write a MATLAB script for plotting (a) the non-dimensional response magnitude for a system with harmonically moving base shown in Fig. 8 (b) the response phase angle for system with harmonically moving base.


Figure 8
9) Rectangular fin of uniform cross section, with width of 18 mm and thickness of 5 mm and length of 100 mm is attached to the wall with surface temperature of $320^{\circ} \mathrm{C}$. The fin is made of material with thermal conductivity of $50 \mathrm{w} / \mathrm{mk}$. The ambient air temperature is $24^{\circ} \mathrm{C}$ and the convection heat transfer coefficient of $15 \mathrm{~W} / \mathrm{m} \mathrm{k}$.

1- ( Plot ) the temperature variation for the following boundary condition
a- Infinitely long fin, b - Adiabatic fin tip, c - Convection from the fin tip.
2- Find the temperature at the midpoint of the fin length
3- Find the heat transfer rate, 4- Find the fin efficiency

