CHAITANYA BHARATI INSTITUTE OF TECHNOLOGY

DEPARTMENT OF CHEMICAL ENGINEERING Stake holder involvement in Curriculum Development AY 21-22

Action taken and implementation in Curriculum

INDEX

S No	Name of the stake holder	Page No.
1	Students	2- 5
2	Teachers	6-9
3	Employers	10-13
4	Alumni	14-17

1) Students

S.no.	Suggestions & opinion	Actions Taken
1	New electives like Optimization in Chemical Processes, Scaleup methods needed	Included in the curriculum
2	Course syllabus can be slightly modified in line with GATE syllabus	Instrumentation and Process control is one subject modified in this manner.
3	Courses on Employability skills needed	Included in the scheme

1) Students (Proof)

CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY (A) Choice Based Credit System (With effect from 2023-2024)

B.Tech (Chemical Engineering)

Semester VII

s.				Schen nstruc		Scheme of E							
No	Course Code	Title of the Course	Hot	ırs pe ek	r	Duration of SEE		mum rks	Credits				
			L	T	P/D	inHours	CIE	SEE					
	THEORY												
1		Professional Elective -IV	3		-	3	40	60	3				
		Open Elective - II	3	-	-	3	40	60	3				
3		Professional Elective - V	3	-	•	3	40	60	3				
4		Open Elective - III	3	-	•	3	40	60	3				
5		Gender sensitization	2	-	-	2	0	50	NC				
6	20CHI03	Internship	4-6 hor		s / 180				3				
		PRAC	CTIC	AL									
8	20CHC24	Project Design Part I	-	-	4	-	50	50	2				
		TOTAL	14		4	-	210	340	17				

	Course Code	Professional Elective IV
1	20CHE13	Biochemical Engineering
2	20CHE14	Corrosion Engineering
3	20CHE15	Optimization of Chemical Processes
4	20CHE16	Process Intensification

	Course Code	Open Elective II
1	20ME O01	Robotics
2	20EGO 01	Technical Writing Skills
3	20CSO 07	Basics of Machine Learning
4	20 IT O 01	Object Oriented Programmin Using JAVA

	Course Code	Professional Elective V
1	20CHE17	Computational Fluid Dynamics
2	20CHE18	Mineral Processing Technology
3	20CHE19	Nuclear Engineering
4	20CHE20	Sustainable Engineering

	Course Code	Open Elective III
1	20MEO03	Research Methodology
2	20EEO02	Energy Management Systems
3	20ITO02	Principles of IoT
4	20PYO01	Histories of Science and Technology

20 CHC20

INSTRUMENTATION AND PROCESS CONTROL

Instruction 3 L+1T Hours per week Duration of SEE 3 Hours 60 Marks SEE 40 Marks Credits

Pre-requisites: Fluid Mechanics, Process Heat Transfer

Course Objectives: This course helps the students to understand:

- 1. The components and characteristics of industrial measurement systems
- 2. The transient behavior of simple chemical processes
- 3. Control loop concepts, terminology, methods, and performance
- 4. Tuning and stability of a controllers
- 5. Advanced control strategies

Course Outcomes: At the end of the course, the students will be able to:

- 1. Understand the measurement techniques for different process variables
- 2. Understand the dynamic behavior of different processes
- Analyze different components of a control loop
 Analyze stability of feedback control system
- 5. Identify the suitable controller for the given processes
- 6. Design controllers for first and second order processes

	CO-10-100													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	3	-	-	-	-	-	-	3	3
CO2	3	1	3	3	2	3	-	-	-	-	-	-	3	3
CO3	3	1	3	3	2	3	-	-	-	-	-	-	3	3
CO4	3	1	3	3	2	3	-	-	-	-	-	-	3	3
CO5	3	1	3	3	2	3	-	-	-	-	-	-	3	3
CO6	3	1	3	3	2	3	-	-	-	-	-		3	3

UNIT-I

Introduction to process control: process variables, Measurement of process variables, sensors and transducers, general Industrial instruments - L/P and P/I converters, pneumatic and electric actuators. P&ID diagrams and equipment symbols.

Characteristics of Measurement System: Elements of instruments, static and dynamic characteristics

Response of First order systems: Transfer Function, Transient response to step, impulse, sinusoidal forcing function, physical examples of first order systems, liquid level, mixing process, concept of time constant, linearization, response of first order systems in series, interacting and non-interacting systems

Response of Second Order Systems: Transient response of under damped, critically damped, over damped systems to step, impulse and sinusoidal forcing functions. Transportation lags. Dynamic responses of various systems, systems with inverse response

Control Systems: Negative and Positive feedback control systems, Servo and Regulatory control problems, Development of Block diagram, Controllers and final control elements, Ideal transfer functions of P, PI, PD and PID

Reduction of physical control systems to block diagrams: Closed loop transfer functions for servo and regulator problems. Overall Transfer functions for multi loop control systems. Transient response of simple control systems for servo and regulator problems, measurement lags. Stability of a control system by Routh's Criterion.

> Dept. of Chemical Engineering Chaitanya Bharathi Institute of Technology

Gandipet, Hyderabad-75.

CRIT(A) with effect from 2022-23

EMPLOYABILITY SKILLS 20EGCO3 (BE/BTech V & VI semester - Common to all Branches)

Instruction 2L Hours per week Duration of SEE 2 Hours SEE 50 Marks CIE 50 Marks Credits

- Course Objectives: To help the students

 1. Learn the art of communication; participate in group discussions and case studies with confidence and to make effective presentations.

 - With-resume packaging, preparing them to face interviews.

 Build an impressive personality through effective time management, leadership qualities, self-confidence and assertiveness.
 - Understand professional etiquette and to make them learn academic ethics and value system.
 - To be compe tent in verbal aptitude.

- Course Outcomes: By the end of the course, the students will be able to
 Become effective communicators, participate in group discussions with confidence and be able to make presentations in a professional context.
 - Write resumes, prepare and face interviews confidently.

 - Be assertive and set short term and long-term goals, learn to manage time effectively and deal with stress. Make the transition smoothly from campus to work, use media with etiquette and understand the academic
 - 5. Enrich their vocabulary, frame accurate sentences and comprehend passages confidently.

UNIT 1

Verbal Aptitude: Error Detection, Articles, Prepositions, Tenses, Concord and Transformation of Sentences-Jumbled Words/Sentences- Vocabulary, Synonyms, Antonyms, One Word Substitutes, Idioms and Phrases, Word/Sentence/Text Completion- Reading Comprehension.

Group Discussion & Presentation Skills: Dynamics of Group Discussion-Case Studies-Intervention, Summarizing, Modulation of Voice, Body Language, Relevance, Fluency and Accuracy, Coherence. Elements of Effective Presentation – Structure of a Presentation – Presentation tools – Body language -Preparing an Effective PPT

Behavioural Skills: Personal strength analysis-Effective Time Management- Goal Setting- Stress management-Corporate Culture - Grooming and etiquette-Statement of Purpose (SOP).

Mini Project: Research-Hypothesis-Developing a Questionnaire-Data Collection-Analysis-General and Technical Report - Writing an Abstract -Technical Report Writing-Plagiarism-Project Seminar.

Interview Skills: Cover Letter and Résumé writing – Structure and Presentation, Planning, Defining the Career Objective, Projecting ones Strengths and Skill-sets – Interviews: Concept and Process, Pre-Interview Planning, Opening Strategies, Answering Strategies, Mock Interviews.

Suggested Reading:

1. Leena Sen, "Communication Skills", Prentice-Hall of India, 2005

Teachers

S.No	Suggestions & opinion	Action Taken
1	Instrumentation and Process Control can be clubbed to study as a single subject	Implemented in the new scheme
2	Plant Design and Economics subject can have two units of Economics and one unit of Equipment Design, with design of various Process equipment	Implemented the suggestions
3	Equipment Drawing course can be taught using CAD software, ASPEN PLUS, PRO II	These are included in the Plant Design lab in the curruculum

20CHE19

PLANT DESIGN AND ECONOMICS

Instruction Duration of SEE SEE CIE Credity

3 L+1T Hours per week 3 Hours 60 Marks 40 Marks

Pre-requisites: MEBC, FM, HT, MUO

Course objectives: This course helps the students to understand the

- Basics of plant design and plant layout.
 Criteria of selecting process equipment, based on which optimized design can be identified.
- Importance of process economics in process industries.

Course Outcomes: At the end of the course, the students will be able to

- Learn the basic aspects of plant design and its elements
 Select a suitable optimized cost-effective equipment for a given process
- Learn the basics of cost accounting and perform the cost analysis of a plant.
 Identify methods of estimation of depeciation and profitability studies.
 Design cost-effective process equipment and plants.
- 6. Design and optimize the process parameters

CO. PO. PSO Mateix

CU-FU-	E 2007 PM	2011							_					
	POI	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	PO	PO	PO	PSOI	PSO2
COL	3	2	1	-	-	-	-	-	2	-	2	1	-	1
CO2	3	1	1	-	-	-	-	-	2	-	1	1	1	1
C03	3	2	2	-	-	-	-	-	2	-	1	1	-	2
CO4	3	2	2	-	-	-	-	-	2	-	1	1	-	2
CO5	3	2	2	-	-	-	-	-	2	-	1	1	3	2
CO6	3	2	2	-	-	-	-	-	2	-	1	1	3	2

UNIT-I

Basic Aspects of Process Design: Introduction - definitions of plant design, process synthesis, process simulation; design factors, design problem and steps; Process flow diagram and Block flow diagram; Mass and energy balances; Piping and Instrumentation diagram; Equipment Design Codes and standards.

Selection of Process Equipment, Specification and Design; Process Utilities, Utility flow diagram with Examples; Materials choice; Plant location – general site considerations, Site layout and Plant layout, Ethics in Engineering design. Safety factors.

cess Economics -Cost Accounting - Capitalinvestment, cost index, Equipment cost; Elements of cost; Expenses; Project cost and cost of production, Various components of cost of production and their estimation, Various components of project cost, variable cost, fixed cost, break even point and their estimation. Estimation of Working Capital. Balance sheets, Project financing, concept of interest, (Present Worth, Future Worth) time value of money, Margin of Safety.

UNIT-IV

Depreciation – Types, Methods of determining Depreciation

Profitability Analysis of Projects, Alternatives Investment, Replacements, Payout time and Rate of return, Total annualized cost, cost indices, payback period, discounted cash flow; Sensitivity analysis, Inflation.

UNIT -V

Design of Fluid Transport Equipment and costs—Pumps, Pressure vessels.

Design of Heat Transport equipment and costs—Heat exchangers, Evaporator

Design of Reactors and cost analysis

Design of Separation Equipment and costs - Distillation, Absorption, Stripping. Optimization in Design - general procedures.

Dept. of Chemical Engineering Chaitanya Bharathi Institute of Technology

Gandipet, Hyderabad-75.

20CHE22

PLANT DESIGN LAB

3P Hours per week Duration of SEE 3 Hours 35 Marks 15 Marks CIE Credits

Pre-requisites: MEBC, FM, HT, MUO

- Course Objectives: This course will

 1. Provide students the opportunity to acquire simulation skills in Chemical Plant equipment design.

 - Introduce students to the importance and principles of design of a plant
 Provide an overall view of design concepts of various unit operations and processes.
 Demonstrate the overview of plant layout, flow sheeting and perform economic evaluation and sensitivity
 - analysis of the plant
 Help students to develop simulation skil
 Aspen Hysys software, CAD, Pro-II etc. ulation skills using various chemical Engineering software like Aspen Plus,

Course Outcomes: At the end of the course, the student will be able to:

- Acquire simulation skills in Chemical Plant equipment design.
 Understand and apply the design concepts to various unit operations and processes.
 Design various Heat and mass transfer equipment.

- Design various Heat and mass transfer equipment.

 Design pumps, pressure vessels and reactors.

 Analyze the performance of a process plant using economic evaluation and sensitivity analysis.

 Perform simulation of design case studies in Aspen Plus/Aspen Hysys software/CAD/Pro-II.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO11	PO12	PSO11	PSO12
CO1	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO2	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO3	3	2	2	2	2		-	-	2	-	-	2	3	2
CO4	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO5	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO6	3	2	2	2	2	-	-	-	2	-	-	2	3	2

LIST OF EXERCISES (Minimum of 10 experiments in the list are to be performed)

- Symbols for Piping and Instrumentation, Flow sheet symbols for unit operations. Design and analysis of pumps and pressure vessels.

 Design of Heat Transfer Equipment Shell and Tube Heat Exchanger Design of Heat Transfer Equipment Condensers/Evaporators

- Design of Reactors 1 Design of Reactors 2
- Design of Mass Transfer Equipment 1 Design of Mass Transfer Equipment 2

- Economic Evaluation Analysis in Aspen Plus Case Study 1
 Economic Evaluation Analysis in Aspen Plus Case Study 2
 Performing Sensitivity Analysis in Aspen Plus Case Study 1
- 12. Performing Sensitivity Analysis in Aspen Plus Case Study 2 13. Overall Plant layout and Design Case Study

Vilbrandt, C.T. and Dryden, C.E., "Chemical Engineering plant design", 4th Ed., Kogakusha, 1979.
 Joshi, M.V. "Process Equipment Design". 2nd Ed., McMillan Co., of India Limited, Madras, 1976.

CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY (A)

Choice Based Credit System (With effect from 2022-2023)

B.Tech (Chemical Engineering)

Semester VI

S.	Course	Tid £4 Commo		Schen nstru		Sch Exar	G 11						
No	No Code	Title of the Course	Но	urs p	er Week	Duration of SEE	Maxi Ma	Credits					
			L	T	P/D	inHours	CIE	SEE					
	THEORY												
1	20CHC18	Chemical Reaction Engineering II	3		-	3	40	60	3				
2	20CHC19	Plant Design & Economics	3	1	-	3	40	60	4				
3	20CHC20	Instrumentation & Process Control	3	1	-	3	40	60	4				
4	20 CHC21	Transport Phenomena	3	1	-	3	40	60	4				
5		Professional Elective – III *	3	-	-	3	40	60	3				
PRACTICAL													
6	20EGC03	Employability Skills			2	2	50	50	1				
7		ni in i i i											

3) Employer

S.no.	Suggestions & opinion	Action taken
1	More of CAD and simulation courses are required.	Included in the curriculum in Plant Design Lab
2	Sustainable Engineering and Waste Management courses needed.	Included as electives in the curriculum
3	Skills related to employability required	Employability skills course included in the curriculum

Employer Proofs

Course Objectives: To help the students

- Learn the art of communication; participate in group discussions and case studies with confidence and to make effective presentations.
- 2. With-resume packaging, preparing them to face interviews.
- Build an impressive personality through effective time management, leadership qualities, self-confidence and assertiveness.
- 4. Understand professional etiquette and to make them learn academic ethics and value system.
- To be competent in verbal aptitude.

Course Outcomes: By the end of the course, the students will be able to

- Become effective communicators, participate in group discussions with confidence and be able to make presentations in a professional context.
- Write resumes, prepare and face interviews confidently.
- 3. Be assertive and set short term and long-term goals, learn to manage time effectively and deal with stress.
- Make the transition smoothly from campus to work, use media with etiquette and understand the academic
 ethics.
- 5. Enrich their vocabulary, frame accurate sentences and comprehend passages confidently.

UNIT

Verbal Aptitude: Error Detection, Articles, Prepositions, Tenses, Concord and Transformation of Sentences-Jumbled Words/Sentences- Vocabulary, Synonyms, Antonyms, One Word Substitutes, Idioms and Phrases, Word/Sentence/Text Completion- Reading Comprehension.

UNIT 2

Group Discussion & Presentation Skills: Dynamics of Group Discussion-Case Studies- Intervention, Summarizing, Modulation of Voice, Body Language, Relevance, Fluency and Accuracy, Coherence. Elements of Effective Presentation – Structure of a Presentation – Presentation tools – Body language - Preparing an Effective PPT

UNIT 3

Behavioural Skills: Personal strength analysis-Effective Time Management-Goal Setting- Stress management-Corporate Culture – Grooming and etiquette-Statement of Purpose (SOP).

UNIT 4

Mini Project: Research-Hypothesis-Developing a Questionnaire-Data Collection-Analysis-General and Technical Report - Writing an Abstract - Technical Report Writing-Plagiarism-Project Seminar.

UNIT !

Interview Skills: Cover Letter and Résumé writing – Structure and Presentation, Planning, Defining the Career Objective, Projecting ones Strengths and Skill-sets – Interviews: Concept and Process, Pre-Interview Planning, Opening Strategies, Answering Strategies, Mock Interviews.

Suggested Reading:

- 1. Leena Sen, "Communication Skills", Prentice-Hall of India, 2005

CBIT(A) with effect from 2022-23 20CHE22 PLANT DESIGN LAB 3P Hours per week Instruction Duration of SEE 3 Hours 35 Marks 15 Marks 1.5 SEE

Pre-requisites: MEBC, FM, HT, MUO

Course Objectives: This course will

- Provide students the opportunity to acquire simulation skills in Chemical Plant equipment design.

 Introduce students to the importance and principles of design of a plant

 Provide an overall view of design concepts of various unit operations and processes.

 Demonstrate the overview of plant layout, flow sheeting and perform economic evaluation and sensitivity analysis of the plant

 Help students to develop simulation skills using various chemical Engineering software like Aspen Plus, Aspen Hysys software, CAD, Pro-II etc.

Course Outcomes: At the end of the course, the student will be able to:

- urse Outcomes: At the end of the course, the student will be able to:

 1. Acquire simulation skills in Chemical Plant equipment design.

 2. Understand and apply the design concepts to various unit operations and processes.

 3. Design various Heat and mass transfer equipment.

 4. Design pumps, pressure vessels and reactors.

 5. Analyze the performance of a process plant using economic evaluation and sensitivity analysis.

 6. Perform simulation of design case studies in Aspen Plus/Aspen Hysys software/CAD/Pto-II.

CO-PO-PSO Matrix

CO-I	O-FSO	NIMELLY												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO11	PO12	PSO11	PSO12
COI	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO2	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO3	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO4	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO5	3	2	2	2	2	-	-	-	2	-	-	2	3	2
CO6	3	2	2	2	2	-	-	-	2	-	-	2	3	2

LIST OF EXERCISES (Minimum of 10 experiments in the list are to be performed)

- Symbols for Piping and Instrumentation, Flow sheet symbols for unit operations.

- Symbols for Piping and Instrumentation, Flow sheet symbols for unit of 2 Design and analysis of pumps and pressure vessels.
 Design of Heat Transfer Equipment Shell and Tube Heat Exchanger
 Design of Heat Transfer Equipment Condensers/Evaporators
 Design of Reactors 1
 Design of Reactors 2
 Design of Mass Transfer Equipment 1
 Design of Mass Transfer Equipment 2
 Design of Mass Transfer Equipment 2
 Design of Mass Transfer Equipment 1
 Desonomic Evaluation Analysis in Aspen Plus Case Study 1
 Derforming Sensitivity Analysis in Aspen Plus Case Study 1
 Performing Sensitivity Analysis in Aspen Plus Case Study 1
 Design Of Meas Transfer Equipment 2
 Design Of Meas Transfer Equipment 2
 Design of Mass Transfer Equipment 2
 Design of Mass Transfer Equipment 1
 Design of Mass Tr

Text Books
1. Vilhrandt: C.T. and Dryden: C.E. "Chemical Engineering plant design" 4th Ed. Kogakusha, 1979.

20CH E 20

With effect from 2023-24

Instruction 3 L Hours per week Duration of SEE 3 Hours 60 Marks SEE CIE 40 Marks Credits 3

Prerequisites: Environmental Science, Organic Chemistry

- Course Objectives: This course will help the students:
 1. To have an increased awareness on issues in areas of sustainability
 2. To understand the role of engineering & technology within sustainable development
 3. To know the methods, tools and incentives for sustainable product service system development
 4. To establish a clear understanding of the role and impact of various aspects of engineering decisions on environmental, societal and economic problems.
 5. To communicate results related to their research on sustainable engineering

Course Outcomes: At the completion of this course students will be able:

- une Officenties: At time complexion of units course students with ore asset:

 1. To relate sustainability concepts and ethical principles towards environment

 2. To understand the different types of environmental pollution problems and their respect sustainable solutions.

 3. To become aware of concepts, analytical methods/models, and resources for evaluating and comparing sustainability implications of engineering activities

 4. To critically evaluate existing and new methods

 5. To develop sustainable engineering solutions by applying methods and tools to research a specific system design.

- design

 6. To apply concepts of sustainable development to address sustainability challenges in a global context.

CO-PO-PSO Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	3	1	1	2	3	2	1	1	1	3	2	2
CO2	2	2	3	2	-1	2	3	2	-1	1	1	3	2	2
CO3	2	1	3	1	2	2	3	2	1	2	1	3	2	2
CO4	3	1	3	3	1	3	3	2	2	1	1	3	2	3
CO5	3	3	3	1	2	2	3	2	1	1	2	3	3	3
CO6	3	2	3	2	1	2	3	2	2	1	1	3	3	2

UNIT- I

Introduction of sustainability- Need and concept of Sustainable Engineering, Social-environmental and economic sustainability concepts, Sustainable development and challenges, Environmental acts and protocols - Clean Development Mechanism (CDM).

UNIT- II

Economic and social factors affecting sustainability, Effects of pollution from natural sources, Solid waste-sources, impacts, 4R (Reduce, Reuse, Recycling, Recover) concept, Tools used to ensure sustainability in engineering activities such as environmental management systems and environmental impact assessment studies.

Global, Regional and Local environmental issues, Carbon credits and Carbon trading, Carbon foot print, Environmental management standards, ISO 14000 series, Life cycle Analysis (LCA)-scope and goal, Procedures of EIA (Environment Impact Assessment) in India.

UNIT-IV
Basic concept of sustainable habitat-Sustainable cities, Sustainable transport, Sustainable sources of energyconventional and renewable sources, Green Engineering: Green buildings, Green materials for sustainable design,
Methods for increasing energy efficiencies of buildings.

Alumni

S. no	Suggestions/Feedback	Action Plan
1	More Chemical Engineering related software coursed required like CAD, ASPEN	Courses containing these concepts are included in Curriculum. In R 18 scheme in PMS Lab and in R 20 Plant Design Lab Course
2	Data Science for Chemical Engineers and ML for Chemical Engineers are needed	Courses are included in the curriculum case studies or examples in chemical engineering are to be included in that.
3	Courses with Experimental and Analytical methods not needed	This course is discontinued in R 20 Curriculum

Alumni (Proofs)

With effect from 2021-22

18CH C 25 PROCESS MODELING AND SIMULATION LAB Instruction 3 Hours per week Duration of SEE 3 Hours SEE 50 Marks CIE 25 Marks Credits 1.5

Course Outcomes: At the end of the course, students will be able to

- 1. Develop chemical engineering process models based on fundamental laws of mass and energy transfer
- Dynamically simulate and interpret two heated tanks, using MATLAB

 Dynamically simulate and analyze continuous reactors in Series using MATLAB
- Adapt ASPEN software to perform steady state simulation of valves
 Apply ASPEN software for simulation of batch Distillation
- Utilize ASPEN software to design Plug flow reactor

List of Experiments

Part I

1. Introduction to Software Packages. Understanding the basic concepts and steps involved for developing process flow sheet.

Part II

i. Setting up models for simulation

Part III: Dynamic simulation using MATLAB

- 1. Two-heated Tanks in series
- Three CSTRs in series at isothermal, constant holdup condition
- 3. Batch Reactor
- 4. Vapor Liquid Equilibrium
- 5. Ideal Binary distillation
- 6. Gas-Phase Pressurized CSTR

Part IV: Steady State simulation using ASPEN

- 1. Simulation of reactor systems
- Simulation of simple units like valves, pumps, flash columns, Heat exchangers
- Simulation of Distillation consults
 Flow-sheeting of chemical process.

Text Books:

1. Manjeet KaurBedi, Prof. Vikram Singh, A Textbook Of Simulation And Modeling, Laxmi

CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY (A)

Choice Based Credit System (With effect from 2023-2024)

B.Tech (Chemical Engineering)

Semester VII

				Schen Instruc		Scheme of E	xamin	ation	
S. No	Course Code	Title of the Course		urs pe ek	r	Duration of SEE		mum rks	Credits
			L	T	P/D	inHours	CIE	SEE	
		TH	EOR	Y					
1		Professional Elective -IV	3		-	3	40	60	3
		Open Elective - II	3	-	-	3	40	60	3
3		Professional Elective – V	3	-	-	3	40	60	3
4		Open Elective - III	3	-	-	3	40	60	3
5		Gender sensitization	2	-	-	2	0	50	NC
6	20CHI03	Internship	4-6		s / 180				3
		PRAG	CTIC	AL					
8	20CHC24	Project Design Part I	-	•	4	-	50	50	2
		TOTAL	14		4	-	210	340	17

	Course Code	Professional Elective IV
1	20CHE13	Biochemical Engineering
2	20CHE14	Corrosion Engineering
3	20CHE15	Optimization of Chemical Processes
4	20CHE16	Process Intensification

	Course Code	Open Elective II
1	20ME O01	Robotics
2	20EGO 01	Technical Writing Skills
3	20CSO 07	Basics of Machine Learning
4	20 IT O 01	Object Oriented Programmin Using JAVA

		Course Code	Professional Elective V
	1	20CHE17	Computational Fluid Dynamics
ľ	2	20CHE18	Mineral Processing Technology

		Course Code	Open Elective III
1	l	20MEO03	Research Methodology
2	2	20FFO02	Energy Management

CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY (A)

Choice Based Credit System (With effect from 2022-2023)

B.Tech (Chemical Engineering)

Semester VIII

	_		Scheme of Ex Instruction Scheme of Ex		Examin	ation			
S. No	Course Code	Title of the Course		urs pe	er	Duration of SEE	Maximum Marks		Credits
			L	T	P/D	inHours	CIE	SEE	1
		TH	EORY	7					
1	Open Elective -IV				-	3	40	60	3
		PRAG	CTICA	AL					
1	20CHC25	Technical Seminar	-	-	2				1
2	20CHC26	Project Part II	-	-	8*				4
		TOTAL	03		10	-			8
*18	0 hrs for the s	tudents working on the paid interns	hip du	ring V	III SEI	M Clock Hour	s per we	eek : 20)

	Course Code	Open Elective IV
1	20ME O04	Principles of Entrepreneurship
2	20 EC O03	Principles of Biomedical Instrumentation
3	20EE O04	Waste management
4	20ADO03	Fundamentals of Data Science