DEPARTMENT OF MECHANICAL ENGINEERING

Scheme of Instruction and Syllabi of

M.E. (Mechanical) (Autonomous)

Specialization:

THERMAL ENGINEERING

Full time

Chaitanya Bharathi Institute of Technology Chaitnaya Bharathi P.O., Gandipet, Hyd-500 075 Ph: 040-24193276, 24193280, Fax: 040-24193278

2013-2014

SI.	Subject	Perio	ds per	Duration	Max.	Marks			
No		we	ek	(Hrs)			Grade		
		L/T	D/P		Univ. Exam	Sessionals			
			S	emester - I					
1.	Core	3		3	80	20			
2.	Core	3		3	80	20			
3.	Core / Elective	3		3	80	20			
4.	Core / Elective	3		3	80	20			
5.	Core / Elective	3		3	80	20			
6.	Elective	3		3	80	20			
7.	Laboratory - I		3			50			
8.	Seminar - I		3			50			
	Total	18	6		480	220			
			Seme	ster - II					
1.	Core	3		3	80	20			
2.	Core	3		3	80	20			
3.	Core / Elective	3		3	80	20			
4.	Core / Elective	3		3	80	20			
5.	Core / Elective	3		3	80	20			
6.	Elective	3		3	80	20			
7.	Laboratory - II		3			50			
8.	Seminar - II		3			50			
	Total	18	6		480	220			
			Seme	ster - III	· · · · · ·				
1.	Dissertation and Project Seminar*		6			100**			
Semester - IV									
1.	Dissertation				Viva - Voce (Grade ***)				

Scheme of Instruction & Examination M.E. (Mechanical Engineering) 4 Semesters (Full Time)

Note : Six core subjects, Six elective subjects, Two Laboratory Courses and Two Seminars should normally be completed by the end of semester II.

- * Project seminar presentation on the topic of Dissertation only
- ** 50 marks awarded by the project guide and 50 marks by the internal committee.
- *** Excellent / Very Good / Good / Satisfactory / Unsatisfactory

Scheme of Instruction & Examination of Post Graduate course in Mechanical Engineering with

specialization in Thermal Engineering

Course duration: 4 Semesters (Full Time)

SI.	Syllabus	Subject	Scher	ne of	Scheme of	of Exam	nination	Grade
No	Ref. No.		Instru	ction	Duration	M-	w Marka	
			ve	is per ek	Duration	IVIA		
			L/T	D/P	in	Univ.	Sessional	
					Hours	Exam		
		CORE SUBJECTS						
1.	ME 601	Fluid Flow and Gas Dynamics	3		3	80	20	
2.	ME 602	Computational Fluid Dynamics	3		3	80	20	
3.	ME 603	Design for Thermal Systems	3		3	80	20	
4.	ME 604	Advanced I nermodynamics	3		3	80	20	
5. C		Advanced Heat & Mass Transfer	3		3	80	20	
Ö		ELECTIVES	3		3	80	20	
1.	ME 502	Finite Element Techniques	3		3	80	20	
2.	ME 503	Computer Aided Modeling and Design	3		3	80	20	
3.	ME 514	Optimization Techniques	3		3	80	20	
4.	ME 516	Engineering Research Methodology	3		3	80	20	
5.	ME 607	Fluid Power Systems	3		3	80	20	
6.	ME 608	Principles of Turbo machinery	3		3	80	20	
7.	ME 609	Design of Gas Turbines	3		3	80	20	
8.	ME 610	Advanced Energy Systems	3		3	80	20	
9.	ME 611	Fuels and Combustion	3		3	80	20	
10.	ME 612	Power Plant Control and Instrumentation	3		3	80	20	
11.	ME 613	Design of Pumps and Compressors	3		3	80	20	
12.	ME 614	Numerical Methods	3		3	80	20	
13.	ME 615	Environmental Engineering and Pollution Control	3		3	80	20	
14.	ME 616	Refrigeration Machinery & Components	3		3	80	20	
15.	ME 617	Energy Management	3		3	80	20	
16.	ME 618	Convective Heat Transfer	3		3	80	20	
17.	ME 619	Thermal & Nuclear Power Plants	3		3	80	20	
		DEPARTMENTAL REQUIREMENTS						
1.	ME 630	Thermal Systems Laboratory (Lab – I)		3			50	
2.	ME 631	CFD Laboratory (Lab –II)		3			50	
3.	ME 632	Seminar – I		3			50	
4.	ME 633	Seminar – II		3			50	
5.	ME 634	Project Seminar		3			50	
6.	ME 635	Dissertation		9		Viva-		
						Voce		
						(*Grad		
						e)		

*Excellent / Very Good / Good / Satisfactory / Unsatisfactory

CBIT	-	Autonomous Regulation									
Depa	artment	Mechanical Engineering	Progra	mme C	ode &	Name	M.E. Th	ermal Eng	ineering		
		Sem	ester-l								
Cour	se Code	Course Name	Hours/	'Week		Credit	Maximu	m Marks			
			L	Т	Р	С	E	1	Total		
ME6	01	FLUID FLOWS & GAS	3	1	0	4	80	20	100		
		DYNAMICS									
Obje	ctive (s)	To create the awareness of	the impo	ortance	of prin	ciples of g	gas dynan	nics in the	design		
		of turbojets, rockets and to	make th	ne unde	rstand	the princi	ples of hy	drodynam	lics in		
	design of pumps, pipes, etc,. and to study separation of flows										
1 1	1 VELOCITY EUNCTIONS Total Hrs 7										
Fluid	flow: Classification of f	uids Lagrangian and Eularian	Motho	te of Sti	idy of	fluid flow	Velocity	and accole	ration		
vecto	ors Circulation and Vor	ticity Stream lines Stream tub	n Neino	lines S	treak l	ines and	Time lines	Stream f	iunction		
and	Potential function		. 1 411	iii 103. O	lican			. Oucann	unotion		
2 1	LAWS OF FLUID FLOW	VS				Total	Hrs		9		
Basi	c laws of fluid flow – Co	ntinuity. Euler's and Bernoulli'	s equati	ons. Inc	ompre	ssible and	d Compre	ssible flow	/S.		
Pote	ntial and viscous flows.	Navier - Stoke's equation and	d applica	ations	•						
3 (CONCEPT OF BOUND	ARY LAYER				Total	Hrs		9		
Flow	v over an aerofoil – Lift a	and Drag coefficients. Boundar	ry layer	theory –	lamin	ar and tur	bulent bo	undary lay	vers.		
Hydr	odynamic and thermal	boundary layer equations. Flow	w separ	ation in I	bound	ary layers					
4 I	FUNDAMENTALS OF (GAS DYNAMICS				Total	Hrs		9		
Gas	dynamics: Energy equ	ation for flow and non flow p	processe	es. Appl	licatior	n of Stead	dy flow er	nergy equ	ation for		
turbi	nes, turbo-compressors	s, nozzles and diffusers. Adi	abatic e	energy e	equation	on. Acous	tic veloci	iy, Mach	Number.		
Stag	nation properties. Relat	tionships between static and s	tagnatic	on prope	erties.	various re	egimes of	tiow – Ste	eady flow		
5 I	DRINCIPI ES OF GAS I			ĸs		Total	Hrs		a		
Isen	tropic flow through vari	able area passages Design	of supe	arsonic a	and si	ibsonic n	ozzles an	d diffuser	s Super		
soni	c flows Expansion and	Shock waves Normal and O	blique S	Shock w	aves	Prandtl-M	lever and	Rankine-l	Huaoniot		
Rela	tions. Simple problems	on normal and oblique shock	waves.		avee.		loyor and		lagomot		
Tota	I hours to be taught							4	3		
Text	book (s)										
1	Kothandaraman, C. ar	nd Rudramoorthy, R., "Basic F	luid Med	chanics"	, New	Age Intl. I	Publishers	.Delhi, 20	04.		
2	Shapiro, "Compressibl	le fluid flow". Tata McGraw Hil	ls Public	ations,	New Y	ork, 2004					
Refe	rence(s)										
1	Modi & Sethi, " Hydrau	ulic Machines and Systems,									
2	Yahya, S.M., "Fundam 2010.	nentals of Compressible Fluid	Flows",	New Ag	e Inter	national F	Pvt Limited	l, Ahmeda	abad,		

CBI	Г	Autonomous Regulation									
Depa	artment	Mechanical Engineering	Progra	mme C	ode &	Name	M.E. Th	ermal Eng	ineering		
		Sem	ester-l								
Cou	rse Code	Course Name	Hours	/ Week		Credit	Maximu	m Marks			
			L	Т	Р	С	Е	1	Total		
ME6	02	COMPUTATIONAL	3	1	0	4	80	20	100		
		FLUID DYNAMICS									
Obje	ective (s)	To create the awareness of	the imp	ortance	of prin	ciples of f	luid dynar	nics in			
engineering applications such as aerodynamic, heat transfer, turbo-machinery etc,.											
1 BASIC EQUATIONS IN FLUID DYNAMICS Total Hrs 9											
Con	Continuity, Momentum and Energy equations, Navier Stokes equations, Reynolds and Favre averaged N - S										
equa	ations. Differential equ	ations for steady and unste	ady sta	te heat	cond	uction. D	ifferential	equations	s for		
diffusion. Introduction to turbulence, Turbulence models-mixing length model, K-ɛ turbulence Model.											
2 (CLASSIFICATION OF	PDEs				Total	Hrs	Į į	9		
Ellip	tic, parabolic and hyper	bolic equations, Initial and bou	indary v	alue pro	blems						
Con	cepts of Finite differer	nce methods – forward, bac	kward a	and cen	tral di	fference.	Errors, C	consistenc	зy,		
Stab	oility analysis by von Ne	umann. Convergence criteria.									
3 (GRID GENERATION			<u> </u>		lotal	Hrs		9		
Grid	Generation-Types of g	rid O,H,C. Coordinate transfor	rmation,	algebra	ic met	hods. Uns	structured	grid gene	ration		
4	FINITE DIFFERENCE					Iotai			<u>, </u>		
Finit	e difference solutions-P	arabolic PDEs – Euler, Crank	NICHOIS	on, Imp	licit me	ethods, El		s – Jacob	I, Gauss		
Selo	ei, ADI, methods. FD- s	solution for viscous incompres	sidle fio	w using	Strea	m function	1 - Vortici	ty method			
5	IOU. FINITE VOI LIME METH					Total	Hre		0		
Jotro	duction to Einite volu	no mathad Einita valuma f	ormulati	one for	diffue		tion con	vaction di	ffucion		
	ation Solution algorith	m for pressure velocity cour	olina in	vheats	flows	llee of	Standered	d aride S	IMPLE		
	rithm	in for pressure velocity coup	Jing in	Sleady	110103.	036 01	Olaggere	u gnus o			
Tota	I hours to be taught							4	5		
Text	book (s):							-	•		
1	Pradip Nivogi, Chakra	abartty S.K. Laha M.K., 'Intro	oduction	to Cor	nputat	ional Flui	d Dvnami	ics'. Pears	son		
	Education, 2005.	,		-	•		,	,			
2	Muralidhar K. Sunda	raraian T. 'Computational Flu	uid flow	and He	eat tra	nsfer'. Na	arosa Put	olishina H	ouse.		
_	2003.	,				,		0	,		
Refe	erence(s):										
3	John D Anderson, 'Co	mputational Fluid Dynamics',	Mc Grav	v Hill, In	c., 199	95.					
4 Patankar, S.V, 'Numerical Heat transfer and Fluid flow', Hemisphere Publishing Company, New York, 1980.											
5	5 Chung, T J, 'Computational Fluid Dynamics, Cambridge University Press, 2002.										

-		Aut	onomou	s Regu	ulation										
Department	Mechanical Engineering	Progra	amme C	ode &	Name	M.E. Th	ermal Eng	ineering							
	Sem	ester-l													
Course Code	Course Name	Hours	/ Week		Credit	Maximu	m Marks								
		L	Т	Р	С	E	1	Total							
ME603	DESIGN FOR THERMAL	3	1	0	4	80	20	100							
	SYSTEMS														
Objective (s)	To create awareness of the	importa	nce of e	enginee	ering desig	gn, econoi	mics and								
	modeling and stress the nee	ed for dy	mamic b	pehavio	or of thern	nal system	IS.								
					T . 4 . 1										
1 ENGINEERING DESIG	SN & ECONOMIS		- Mori	kat and		Hrs		9 aratian							
Introduction – Need – Criteria of Success – Probability of success – Market analysis – Feasibility – R&D – Iteration –															
Designing a Workable Sys	tem: Workable and ontimum s	vetom	Docian	of a F	ood Free	zina Plant	Prolimi	nariae ta							
the study of Optimization.	Designing a Workable System: Workable and optimum system – Design of a Food Freezing Plant – Preliminaries to the study of Optimization.														
Economics : Interest - lu	mp sum, Compounded annua	ally — Iu	mp sun	n Com	pounded	more ofte	en than a	innually-							
Compound – amount factor	or (f/p) and present - worth f	actor (p	/f) Futu	re wor	, th of a u	niform se	ries of an	nounts –							
Present worth of a uniform	n series of amounts - Gradien	t presei	nt work	factor	 Bonds 	 Shift in 	time of a	series -							
Evaluating potential investr	ments. Taxes – Depreciation –	Influenc	e of Inco	ome Ta	ах										
2 MODELING THERMA	L EQUIPMENT				Total	Hrs	9	9							
Modeling Thermal Equipm	nent: Selecting Vs. Simulating	g a hea	t excha	anger -	- Binary	solutions	- Tempe	erature -							
Concentration – Pressure	Characteristics – Developing T	′ Vs. – ×	diagrar	m – co	ndensatio	n of a Bin	ary mixtu	re Single							
- Stage distillation - Reci	tification – Pressure drop and	pumpir	ng powe	er – Iu	urbo mac	hinery. Sy	rstem Sim	- Stage distillation - Rectification - Pressure drop and pumping power - Turbo machinery System Simulation							
Classes of simulation - Se	Classes of simulation – Sequential and simultaneous calculations – Simulation of a gas Turbine system.														
3 OPTIMIZATION Total Hrs 9								nulation :							
3 OPTIMIZATION	timization – Ontimization proce	ulations	– Simu		Total	urbine sys Hrs Search Me	stem.	aulation : 9							
3 OPTIMIZATION Optimization: Levels of Opt 4 THERMODYNAMIC R	imization – Optimization proce	ulations dures –	– Simu Lagranç	ge Mult	ipliers – S Total	urbine sys Hrs Search Me Hrs	stem.	9 9							
3 OPTIMIZATION Optimization: Levels of Opti 4 THERMODYNAMIC R Thermodynamic Properties	imization – Optimization proce ELATIONS s Modeling : The form of the	ulations dures – equatio	<u>– Simu</u> Lagranç on – P-V	ge Mult	ipliers – S Total Total Total	urbine sys Hrs Search Me Hrs - P-T rela	tem.	9 9 9 aturation							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization: Construction of the construct	timization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation –	ulations dures – equatic Maxwel	<u>– Simu</u> Lagranç on – P-' Is relatio	ge Mult V-T eq	ipliers – S Total ipliers – S Total uations –	urbine sys Hrs Search Me Hrs - P-T rela	stem. ethods tion for s	9 9 9 aturation							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization: Conditions and Content of Conten	timization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – COF THERMAL SYSTEMS	ulations dures – equatic Maxwel	<u>– Simu</u> Lagranç on – P- ¹ Is relatio	ge Mult V-T eq ons	Total Total ipliers – S Total uations – Total	urbine sys Hrs Search Me Hrs - P-T rela Hrs	stem.	9 9 aturation 9							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization: Properties conditions. P/f density of lice 5 DYNAMIC BEHAVIOR Calculus Methods of Optimization of Density in the density of the de	imization – Optimization proce ELATIONS s Modeling : The form of the guid. The clayperon equation – COF THERMAL SYSTEMS ization – Dynamic Programmin	ulations dures – equatio Maxwel	– Simu Lagranç on – P-' Is relatio	V-T eq progra	Total Total ipliers – S Total uations – Total mming, Li	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem. sthods tion for s ramming.	9 9 aturation 9							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization of the second state of the	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – OF THERMAL SYSTEMS ization – Dynamic Programmin o design.	ulations dures – equatic Maxwel ng – Geo	– Simu Lagranç on – P-` Is relatio	V-T eq progra	ipliers – S Total ipliers – S Total uations – Total mming, Li	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem. thods tion for s ramming.	9 9 aturation 9							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimermodynamic Properties conditions. P/f density of lice 5 DYNAMIC BEHAVIOR Calculus Methods of Optimer Probabilistic Approaches to Total hours to be taught	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – c OF THERMAL SYSTEMS ization – Dynamic Programmin o design.	ulations dures – equatic Maxwel ng – Geo	– Simu Lagrang on – P-' Is relatio	V-T eq pons Progra	Total ipliers – S Total uations – Total mming, Li	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem. thods tion for s ramming.	9 9 aturation 9							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimer Conditions. P/f density of lice 5 DYNAMIC BEHAVIOR Calculus Methods of Optimer Probabilistic Approaches to Total hours to be taught Text book (s)	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – c OF THERMAL SYSTEMS ization – Dynamic Programmin o design.	ulations dures – equatic Maxwel ng – Geo	– Simu Lagrang on – P-` Is relatio	V-T eq ons Progra	ipliers – S Total ipliers – S Total uations – Total mming, Li	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem. thods tion for s ramming.	9 9 aturation 9							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimes 4 THERMODYNAMIC R Thermodynamic Properties conditions. P/f density of lic 5 DYNAMIC BEHAVIOR Calculus Methods of Optime Probabilistic Approaches to Total hours to be taught Text book (s) 1	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – OF THERMAL SYSTEMS ization – Dynamic Programmin o design. gn of Thermal Systems, McGra	ulations dures – equatic Maxwel ng – Geo w-Hill B	– Simu Lagrans on – P-' ls relatio pometric I	ge Multi ge Multi V-T eq ons Progra	Total ipliers – S Total uations – Total mming, Li	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem. sthods tion for s ramming.	9 9 aturation 9							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimes of Conditions. P/f density of lice 4 THERMODYNAMIC R Thermodynamic Properties conditions. P/f density of lice 5 DYNAMIC BEHAVIOR Calculus Methods of Optimes Probabilistic Approaches to Total hours to be taught Text book (s) 1 Stoecker, W.F., Designation of the store of	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – OF THERMAL SYSTEMS ization – Dynamic Programmin o design. gn of Thermal Systems, McGra sign of Fluid Thermal Systems,	ulations dures – equatic Maxwel ng – Geo w-Hill B , Raj p.C	<u>– Simu</u> Lagrang on – P- Is relation pometric I oook Cor Chhabra	V-T eq Drs Progra	Total ipliers – S Total uations – Total mming, Li	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem. thods tion for s ramming.	9 9 aturation 9							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization: Properties: conditions. P/f density of lice 5 DYNAMIC BEHAVIOR Calculus Methods of Optimization: Approaches to Total hours to be taught Text book (s) 1 Stoecker, W.F., Designation 2 William S. Janna, Designation	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – OF THERMAL SYSTEMS ization – Dynamic Programmin o design. gn of Thermal Systems, McGra sign of Fluid Thermal Systems,	ulations dures – equatic Maxwel ng – Geo w-Hill B , Raj p.C	– Simu Lagrang on – P- Is relatio pometric I ook Cor Chhabra	V-T eq Drs Progra mpany ,2011	Total ipliers – S Total uations – Total mming, Li	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem.	9 9 aturation 9 5							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization: Properties: conditions. P/f density of lic 5 DYNAMIC BEHAVIOR Calculus Methods of Optimization: Approaches to Total hours to be taught Text book (s) 1 Stoecker, W.F., Designal 2 William S. Janna, Designal 1 Robert F.Boehm, Devignation	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – OF THERMAL SYSTEMS ization – Dynamic Programmin o design. gn of Thermal Systems, McGra sign of Fluid Thermal Systems, relopments in the Design of The	ulations dures – equatic Maxwel ng – Geo w-Hill B , Raj p.C	– Simu Lagrang on – P- Is relatio pometric I ook Cor Chhabra /stems,(mpany 2011 Cambri	Total ipliers – S Total juations – Total mming, Li , 1987.	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog	stem. (1997)	9 9 aturation 9 5							
3 OPTIMIZATION Optimization: Levels of Optimization: Levels of Optimization: Levels of Optimization: Properties: conditions. P/f density of lice 5 DYNAMIC BEHAVIOR Calculus Methods of Optimization: Approaches to Total hours to be taught Text book (s) 1 Stoecker, W.F., Designation 2 William S. Janna, Designation 1 Robert F.Boehm,Devid	imization – Optimization proce ELATIONS s Modeling : The form of the quid. The clayperon equation – OF THERMAL SYSTEMS ization – Dynamic Programmin o design. gn of Thermal Systems, McGra sign of Fluid Thermal Systems, relopments in the Design of The gn and Optimization of Therma	ulations dures – equatic Maxwel ng – Geo w-Hill B , Raj p.C ermal S I Syster	– Simu Lagrang n – P- Is relatio pometric I ook Cor Chhabra ystems,(ns, Tayl	mpany ,2011 Cambri or & Fr	Total ipliers – S Total uations – Total mming, Li , 1987.	urbine sys Hrs Search Me Hrs - P-T rela Hrs near Prog ersity pres	stem. ethods tion for s ramming. 4 ss 2005	9 9 aturation 9 9 5							

CBIT	Autonomous Regulation										
Department	Mechanical Engineering	Progr	amme C	ode & Name	M.E. Th	ermal Er	ngineering	3			
·	· · · · · · ·	Seme	ster-1				U U				
Course Code	Course Name	Hours	s/Week		Credit	Maxim	um Marks	6			
	-	L	Т	Р	С	Е	1	Total			
ME604	ADVANCED	3	1	0	4	80	20	100			
	THERMODYNAMICS										
Objective (s)	To create awareness of th	ie impo	rtance of	f thermodyna	mic principle	s in engi	neering				
	applications such as I.C e	ngine c	ombusti	on, psychrom	etry, air cond	ditioning	processes	s, and			
power cycles.											
1 LAWS OF THERMODYNAMICS Total Hrs 9											
Review of Thermo dynamic Laws and Corollaries – Transient Flow Analysis – Second law of thermodynamics –											
Entropy - Availability and	unavailability - Irreversibility	y – The	rmo dyn	amic Potentia	als – Maxwel	Relatior	ns – Spec	ific			
Heat Relations – Mayer's relation - Evaluation of Thermodynamic properties of working substance											
2 PSYCHROMETRY AND AIR CONDITIONING PROCESS Total Hrs 9											
P.V.T. surface – Equation	P.V.T. surface – Equations of state – Real Gas Behaviour – Vander Waal's equation - Generalised compressibility										
Factor – Energy propertie	es of Real Gases – Vapour p	pressure	e – Clau	sius – Clapey	ron Equation	n – Throt	tling – Jou	ule –			
I hompson coefficient.							•				
Non-reactive Mixture of p	erfect Gases – Governing L	_aws –	Evaluati	on of propert	es – Pychro	ometric N	/lixture pro	operties			
and psychrometric chart	 Air conditioning processes 	and psychrometric chart – Air conditioning processes – Cooling Towers – Real Gas Mixture									
3 COMBUSTION REACTIONS Total Hrs 9											
3 COMBUSTION REA			F	-	Total Hrs		9 				
Combustion – Combustion	CTIONS on Reactions – Enthalpy of F	Formati	on – Ent	tropy of Form	Fotal Hrs ation – Refe	rence Le	9 evels for T	ables –			
Combustion – Combustion – Combustion – Combustion – Combustion – H	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Cases – Effacts of New	Formati flame	on – Ent Tempera	tropy of Form ature Genera	Fotal Hrs ation – Refe I product –	rence Le Enthalpie	9 evels for T es – Equi	ables – ilibrium.			
COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation The chemical regimed re	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor octential and phase Equilibri	Formati flame n-reacti	on – Eni Tempera ing Gase	tropy of Form ature Genera es Equilibrium	Fotal Hrs ation – Refe I product – i in Multiple I	rence Le Enthalpie Reaction	9 evels for T es – Equ s. The va	ābles – ilibrium. n Hoff's			
COMBUSTION REA Combustion – Combustio Energy of formation – H Chemical Equilibrium of I Equation. The chemical p	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of No potential and phase Equilibri	Formati flame n-reacti um – Tl	on – En Temper ing Gase he Gibbs	tropy of Form ature Genera es Equilibrium s phase Rule.	Total Hrs ation – Refe I product – I in Multiple I	rence Le Enthalpie Reaction	9 evels for T es – Equ s. The va	ābles – ilibrium. n Hoff's			
COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles. Review B	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor potential and phase Equilibrin	Formati flame n-reacti um – Tl	on – Ent Tempera ing Gase he Gibbs	tropy of Form ature Genera es Equilibrium phase Rule.	Total Hrs ation – Refe I product – I in Multiple I Total Hrs	rence Le Enthalpie Reaction	9 evels for T es – Equ s. The va 9	ables – ilibrium. n Hoff's			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. The	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor potential and phase Equilibriu inary vapour cycle, co-genu- rmo Dynamics off irreversib	Formati flame n-reacti um – Tl eration	on – En Tempera ing Gase he Gibbs and Co	tropy of Form ature Genera s Equilibrium phase Rule.	Total Hrs ation – Refe I product – in Multiple I Total Hrs s – Second – phenomet	rence Le Enthalpie Reaction law ana	9 evels for T es – Equ s. The va s. The va 9 alysis of c laws – C	ābles – ilibrium. n Hoff's cycles – Onsagar			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Their Reciprocity Relation – A	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor potential and phase Equilibriu inary vapour cycle, co-genu rmo Dynamics off irreversib oplicability of the phenomer	Formati flame n-reacti um – Tl eration le proc	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera s Equilibrium phase Rule. bhase Rule. Introduction ons – Heat F	Total Hrs ation – Refe I product – i in Multiple I Total Hrs is – Second – phenomer ux and Entro	rence Le Enthalpie Reaction law ana nological	9 evels for T es – Equ s. The va 9 alysis of c laws – C luction –	Tables – ilibrium. n Hoff's cycles – Dnsagar Thermo			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Their Reciprocity Relation – A dynamic phenomena – T	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor potential and phase Equilibric inary vapour cycle, co-gene rmo Dynamics off irreversib oplicability of the phenomer hermo electric circuits	Formati flame n-reacti um – Tl eration ile proc nologica	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera s Equilibrium s phase Rule. mbined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – i in Multiple I Total Hrs is – Second – phenomer ux and Entro	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va 9 alysis of c laws – C luction –	Tables – ilibrium. n Hoff's cycles – Onsagar Thermo			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Their Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor botential and phase Equilibriu inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION	Formati flame n-reacti um – Tl eration le proc nologica	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera s Equilibrium s phase Rule. mbined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – i in Multiple f Total Hrs is – Second – phenomer ux and Entro Total Hrs	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va 9 alysis of c laws – C luction – 9	ables – ilibrium. n Hoff's cycles – Dnsagar Thermo			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. The Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Non botential and phase Equilibriu inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy –	Formati flame n-reacti um – Tl eration le proc nologica Thermo	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio p-ionic po	tropy of Form ature Genera s Equilibrium s phase Rule. mbined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – in Multiple I Total Hrs s – Second – phenomer ux and Entro Total Hrs on -Thermod	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va s.	ables – ilibrium. n Hoff's cycles – Dnsagar Thermo			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. There Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generatio	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Non botential and phase Equilibriu inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells.	Formati flame n-reacti um – Tl eration nele proc nologica	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera es Equilibrium s phase Rule. mbined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – in Multiple F Total Hrs s – Second – phenomer ux and Entro Total Hrs on -Thermod	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va s. The va 9 alysis of c laws – C luction – 9 devices M	ables – ilibrium. n Hoff's cycles – Onsagar Thermo			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Then Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generatio Total hours to be taught Total hours to be taught	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor botential and phase Equilibric inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells.	Formati flame n-reacti um – Tl eration nele proc nologica	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera es Equilibrium s phase Rule. mbined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – in Multiple F Total Hrs s – Second – phenomer ux and Entro Total Hrs on -Thermoo	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va s. The va 9 alysis of c laws – C luction – 9 devices M 45	ables – ilibrium. n Hoff's cycles – Onsagar Thermo Magneto			
3 COMBUSTION REA Combustion – Combustic Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Then Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generatio Total hours to be taught Text book (s)	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor botential and phase Equilibriu inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells.	Formati flame n-reacti um – Tl eration nele proc nelogica	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera es Equilibrium s phase Rule. mbined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – in Multiple I Fotal Hrs s – Second – phenomer ux and Entro Total Hrs on -Thermod	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va s. The va 9 dysis of c laws – C luction – 9 devices M 45	Tables – ilibrium. n Hoff's Dnsagar Thermo			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. There Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generatio Total hours to be taught Text book (s) 1 P.K. Nag, Basic and	CTIONS on Reactions – Enthalpy of P leat of Reaction – Aiabatic deal Gases – Effects of Non botential and phase Equilibrid inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells.	Formati flame n-reacti um – Tl eration le proc hologica Thermo	on – Ent Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera es Equilibrium s phase Rule. mbined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – in Multiple I Total Hrs s – Second – phenomer ux and Entro Total Hrs on -Thermod	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The val s. The val g alysis of c laws – C laws – C laction – 9 devices M	Tables – ilibrium. n Hoff's Dnsagar Thermo			
3 COMBUSTION REA Combustion – Combustion Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Then Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generation Total hours to be taught Text book (s) 1 P.K. Nag, Basic and 2 J.P. Holman "Therm	CTIONS on Reactions – Enthalpy of P leat of Reaction – Aiabatic deal Gases – Effects of Non botential and phase Equilibriu inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells.	Formati flame n-reacti um – Tl eration le proc nologica Thermo	on – Eni Tempera ing Gase he Gibbs and Co esses – al Relatio	tropy of Form ature Genera s Equilibrium s phase Rule. bined cycle Introduction ons – Heat F	Total Hrs ation – Refe I product – in Multiple I Fotal Hrs is – Second – phenomen ux and Entro Total Hrs on -Thermoo	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va lysis of c laws – C luction – 9 devices M 45	ables – ilibrium. n Hoff's Dnsagar Thermo Magneto			
3 COMBUSTION REA Combustion – Combustic Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Then Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generatio Total hours to be taught Text book (s) 1 P.K. Nag, Basic and 2 J.P. Holman "Therm	CTIONS on Reactions – Enthalpy of P leat of Reaction – Aiabatic deal Gases – Effects of Nor potential and phase Equilibriu inary vapour cycle, co-genu- mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells.	Formati flame n-reacti um – Tl eration le proc nologica Thermo	on – Eni Tempera ing Gase he Gibbs and Co eesses – al Relatio	tropy of Form ature Genera s Equilibrium s phase Rule. bined cycle Introduction ons – Heat F	Fotal Hrs ation – Refe I product – in Multiple F Fotal Hrs is – Second – phenomen ux and Entro Fotal Hrs on -Thermoo	rence Le Enthalpie Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va 9 ilysis of c laws – C luction – 9 devices M 45	ables – ilibrium. n Hoff's Dnsagar Thermo Magneto			
3 COMBUSTION REA Combustion – Combustic Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles. Then Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generatio Total hours to be taught Text book (s) 1 P.K. Nag, Basic and 2 J.P. Holman "Therm 1 Obert Edward. F. &	CTIONS on Reactions – Enthalpy of P leat of Reaction – Aiabatic deal Gases – Effects of Nor potential and phase Equilibrin inary vapour cycle, co-gener mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells.	Formati flame n-reacti um – Tl eration le proc nologica Thermo TMH,20	on – Eni Tempera ing Gase he Gibbs and Co esses – al Relatio p-ionic po 008.	tropy of Form ature Genera s Equilibrium s phase Rule. bined cycle Introduction ons – Heat F bower generation ower generation	Total Hrs ation – Refe I product – in Multiple I Fotal Hrs s – Second – phenomen ux and Entro Fotal Hrs on -Thermoo	rence Le Enthalpia Reaction law ana nological opy Proc	9 evels for T es – Equ s. The va 9 ilysis of c laws – C luction – 9 devices M 45	Tables – ilibrium. n Hoff's Dnsagar Thermo Magneto			
3 COMBUSTION REA Combustion – Combustic Energy of formation – H Chemical Equilibrium of I Equation. The chemical p 4 POWER CYCLES Power cycles, Review B Refrigeration cycles.Then Reciprocity Relation – A dynamic phenomena – T 5 DIRECT ENERGY C Introduction – Fuel Cells Hydrodynamic Generatio Total hours to be taught Text book (s) 1 P.K. Nag, Basic and 2 J.P. Holman "Therm 1 Obert Edward. F. & 2 Younus.A.cengel &	CTIONS on Reactions – Enthalpy of F leat of Reaction – Aiabatic deal Gases – Effects of Nor botential and phase Equilibriu inary vapour cycle, co-gene mo Dynamics off irreversib oplicability of the phenomer hermo electric circuits ONVERSION - Thermo electric energy – ns – Photo voltaic cells. d Applied Thermodynamics, no Dynamics", Mc Graw Hill Young Rober L, "Elements Michael A. Boles " Thermodynamics	Formati flame n-reacti um – Tl eration le proc nologica Thermc TMH,20 of Ther dynamid	on – Eni Tempera ing Gase he Gibbs and Co esses – al Relatio p-ionic po 008.	tropy of Form ature Genera s Equilibrium s phase Rule. bined cycle Introduction ons – Heat F wer generation ower generation ower generation	Total Hrs ation – Refe I product – in Multiple I Fotal Hrs s – Second – phenomer ux and Entro Fotal Hrs on -Thermoo	rence Le Enthalpia Reaction law ana nological opy Proc dynamic	9 evels for T es – Equ s. The val 9 ilysis of c laws – C luction – 9 devices M 45	ables – ilibrium. n Hoff's Disagar Thermo Magneto			

CBI	r i i i i i i i i i i i i i i i i i i i	Autonomous Regulation								
Depa	artment	Mechanical Engineering	Progra	amme C	ode	e & Name	M.E. Th	ermal E	Ingineering	
			Semes	ster-1						
	Course Code	Course Name	Hours	/Week			Credit	Maxin	num Marks	
			L	Т	P		C	E		Total
ME6	05	ADVANCED HEAT	3	1	0		4	80	20	100
		& MASS TRANSFER								
Obje	ective (s)	To create awareness of the	importa	ince of p	orino	ciples of heat	transfer p	pertainir	ng to condu	ction,
		convection, radiation, boiling	g, conde	ensation	, an	nd mass trans	fer in eng	ineerin	g applicatio	ns
1	BRIEF INTRODU	CTION TO DIFFERENT M	IODES	OF		Tota	al Hrs		9	
Con	duction: General I	neat conduction equation-	Initial a	nd Bou	Inda	ary conditior	ns Stead	y State	Heat Tra	nsfer:
Sim	plified heat transfe	er in 1D and 2D – Ėins.Tra	nsient	heat co	ondu	uction; Lump	oed syste	, em ana	alysis- Hei	sler
chai	, rts-semi infinite so	lid-use of shape factors in	condu	ction - 2	2D	transient he	at condu	ction -	- product	
solu	tions								•	
2 FINITE DIFFERENCE METHODS FOR CONDUCTION Total Hrs								9		
1D	& 2D steady sta	te heat conduction probl	ems –	implic	it a	and explicit	method	s. For	ced Conve	ection:
Equ	ations of Fluid Flo	ow – Concepts of Continu	ity, mo	mentun	n e	equations – I	Derivatio	n of E	nergy equ	ation -
Met	hods to determine	e heat transfer coefficient:	Analyt	ical Me	ethc	ods - Dimen	sional A	nalysis	and cond	ept of
exa	ct solution. Approx	<u>kimate Method – Integral a</u>	nalysis	S.						
3	EXTERNAL FLO	NS				Tota	al Hrs		9	
Flov	v over a flat plat	te: Integral method for la	aminar	heat 1	trar	nsfer coeffic	cient for	differe	ent velocit	y and
tem	perature profiles.	Application of empirical r	elation	s to va	riat	tion geometi	rics for l	_amina	ar and Tur	bulent
flow	s.Internal flows: F	ully developed flow: Integ	ral ana	alysis fo	or la	aminar heat	transfer	coeffi	cient – Ty	pes of
flow	- Constant Wall	Temperature and Constan	t Heat	Flux Bo	oun	ndary Condit	ions - H	ydrody	namic & th	hermal
entr	y lengths; use of e	empirical correlations.				Tata				
4	FREE CONVECT					Iota	al Hrs		9	
Арр	roximate analysis	on laminar free convection	ve nea	it transi	rer	- Boussine	sque Ap	proxim	nation - Di	merent
geo	metries - compline	ed free and forced convection on a vorti		lling an			n: Bollin(g curve	e – Correia Im condon	ations-
for	Sell'S theory of the		cai pia	ie – As	sur	mpuons & co	Jirelation	IS OF II	im conden	sation
Rad	interent geometric	5. fer: Radiant heat exchance	in ar	av nor	n-ar	rav bodias v	with tran	emittin	a roflactin	hae na
abso	orbing media, spe	cular surfaces, gas radiatio	on – ra	diation	froi	m flames	with tran	SIIIIIII	y, renectii	iy anu
5	MASS TRANSFE	R				Tota	al Hrs		9	
Con	cepts of mass tra	nsfer – Fick's Law of Diffu	usion o	diffusio	n in	n dases diff	usion in	liquids	and solid	s the
mas	s transfer coeffici	ent . evaporation processe	es in th	ie atmo	spł	here & conv	ective m	ass tra	ansfer Ana	logies
– Si	anificance of non-	dimensional numbers								
Tota	I hours to be taught								45	
Text	book (s)									
1	Necati Ozisik "He	eat Transfer" TMH 1998								
2	Incropera Dewitt	Fundamentals of Heat & I	Mass T	ransfer	r — .	John Wiley 2	2007			
					_	,				
1	Yunus Cengel H	eat Transfer: A basic appr	oach –	TMH 2	2008	8				
2	R.C.Sachdeva F	undamentals of Engineeri	ng Hea	t & Ma	ss T	Transfer" Ne	w Age li	nternat	tional	
	Publications 201	0	-				U U			
3	J.P.Holman "Hea	at Transfer" Tata Mc Graw	Hill, 20	208						

CBIT	-	Autonomous Regulation									
Depa	artment	Mechanical Engineering	Progra	mme C	ode &	Name	M.E. The	ermal Eng	ineering		
		Sem	ester-I					0			
Cour	se Code	Course Name	Hours/	Week		Credit	Maximu	m Marks			
			L	Т	Р	С	E		Total		
ME6	06	ADVANCED I.C.	3	1	0	4	80	20	100		
		ENGINES									
Obje	ctive (s)	To create awareness of the	importa	nce of w	orking	principle:	s of I.C. E	ngines, ar	nd		
		familiarize various technique	es to cor	ntrol exh	aust e	missions	with the u	se of alter	nate		
fuels.											
1 SPARK IGNITION ENGINES Total Hrs 9											
Spar	Spark ignition engine mixture requirements - Fuel - Injection systems - Monopoint, Multipoint injection, Direct										
injec	tion – Stages of comb	oustion – Normal and abnor	mal con	nbustior	n – ⊦a	actors affe	ecting kno	ock – Cor	nbustion		
chan	IDERS.					Tatal					
2 0	JOIMPRESSION IGNITI	ON ENGINES				Iotal	Hrs	<u></u>)		
Stag	es of compustion in C.	I. Engine – Direct and indire	ct injecti	on syst	ems –	Combus	ton cham	bers – Fu	iel spray		
2	NOI – Spray structure, 3		allon - F		<u>n – in</u>	Total		charging.	<u>, </u>		
3 I Dollu		ION AND CONTROL	nhurnt h	vdrooor	hon N		nrs ko ond D	articulato	mottor		
Moth	idini – Sources – Form	sions - Catalytic converter	and D	articulat	DON, P	nox, Sinu ne Meth	nde of m		induct –		
Intro	duction to emission nor	ms and Driving cycles	s anu r	anticula		ps . Meu		leasurenne			
4	AI TERNATIVE FUELS					Total	Hrs	(3		
Alco	hol Hydrogen Natural	Gas and Liquefied Petroleum	Gas- F	Propertie	es Sui	tability M	erits and	Demerits	as fuels		
Engi	ne Modifications.		040 1	roporae	.o, ou	caomy, m		Donnonito	40 14010,		
5 1	RECENT TRENDS					Total	Hrs	9)		
Modi	fication in I.C. engine to	o suit bio-fuels- Lean Burn E	ngines -	 Stratifi 	ed cha	arge Engi	nes – hon	nogeneou	s charge		
com	pression ignition(HCCI)	engines and GDI concepts- F	Plasma I	gnition -	- Meas	surement	technique	s – Laser	Doppler,		
Aner	nometry			•			•		•••		
Tota	I hours to be taught							4	5		
Text	book (s)										
1	Obert, E.F.Internal Co	mputation Engines Harper & F	Row, Pul	blishers	N.Y3r	d edition '	1973.				
2	GILL, P.W.and Smith	(Jr,J.H, fundamentals of Inter	nal com	bustion	Engin	es, Oxfor	d & IBH p	oublishing	Co.New		
	Delhi, 1967.				-			-			
1	Heywood, J.B, Interna	I Combustion engine fundame	entals, M	cGrave	Hills,	Book Co,	New York	, 1988.			
2 Taylor C.F.and Taylor, E,S,The Internal Combustion Engine in Theory and Practice, M.I.T.Press, 1968.											
3	3 Mathur, M.L. and Sharma, R.P., Internal Combustion Engine, Dhanpat Rai & Sons, Delhi, 5 th Edition 1990.										
4	4 Ganeshan, V., Internal Combustion engines, Tata Mc Graw Hills Publishing Co.Ltd, New Delhi 1984.										

CBIT		Au	tonomou	s Rea	ulation			
Department	Mechanical Engineering	Prog	ramme C	ode &	Name	M.E. The	ermal End	ineerina
	Sem	nester-I					J	J
Course Code	Course Name	Hours	s/ Week		Credit	Maximu	m Marks	
		L	Т	Р	С	E	1	Total
ME502	FINITE ELEMENT TECHNIQUES	3	1	0	4	80	20	100
Objective (s)	Identify mathematical mode Enable the students to form Enable the students to per software	l for so ulate th form er	lution of one design agineering	comm probl g simu	on engine ems into F ulations us	ering prob EA. sing Finite	lems Element	Analysis
					Total	Uro		`
1 FIELD PROBLIMES AN	nd MODELING	blome	Stroce o		Iotai	HIS Boundary	condition) Strain
Displacement relations. Str	ess-strain relations.	Diems.	Sliess a	nu Ey	umbrium.	Boundary	conunions	s. Strain-
One Dimensional Problem Potential Energy approach of boundary conditions. Qu	 Finite element modeling. Le : Assembly of Global stiffness adratic shape functions. 	ocal, na matrix	atural an and load	d glol I vecto	oal coordi or. Finite e	nates and lement eq	l shape fu juations, ti	unctions. eatment
2 ANALYSIS OF TRUSS	SES AND FRAMES				Total	Hrs)
Analysis of plane truss wi	th number of unknowns not	exceed	ing two a	at ead	ch node. /	Analysis o	f frames	with two
translations and a rotationa	I degree of freedom at each no	ode.						
Analysis of Beams: Elemer	t stiffness matrix for two node	d, two d	legrees c	of free	dom per n	ode for be	am eleme	nt.
3 TWO DIMENSIONAL S	STRESS ANALYSIS		<u> </u>	41	Total	Hrs	,)
boundary conditions. Two modeling of Axisymmentric Convergence requirements	dimensional four noded isopal solids subjected of axisymme and geometric isotropy	rametric tric load	c elemen ding with	ts and triang	d numerica ular eleme	al integrati ents.	on. Finite	element
4 HEAT TRANSFER PR	OBLEMS AND DYNAMIC AN	ALYSIS	S		Total	Hrs)
Steady state heat transfer thin plate. Time dependent field proble Dynamic analysis: Formula Evaluation of Eigen values Analysis of a uniform shaft	analysis: One dimensional ar ems: Application to one dimer ation of finite element modeli and Eigen vectors. subjected to torsion using Fini	nalysis Isional I Ing of I Ite Elem	of a fin a heat flow Eigen va ient Anali	and tw in a ro lue pi ysis.	vo dimens od. roblem foi	ional conc	duction an ed bar an	alysis of d beam.
5 THREE DIMENSIONA	L PROBLEMS IN SRESS AN	ALYSIS	5	, 	Total	Hrs)
Finite element formulation Element formulation of an i Bending of elastic plates.	of three dimensional problems ncompressible fluid. Potential f ntroduction to non-linear probl	in stre low pro ems an	ss analys blems d Finite E	sis. Fi Eleme	nite nt analysis	ssoftware		
Total hours to be taught							4	5
Text book (s)								
1 Tirupathi R Chandrup Prentice Hall of I	atla and Ashok.D. Belegundu, ndia, 1997	Introduc	tion of Fi	nite El	ement in E	ingineering		
2 Rao S.S.,The Finite El	ement Methods in Engineering, I	Pergam	on Press	1989				
1 Segerland. L.J., Applied Finite Element Analysis, Wiley Publication1984.								
I 2 I Reddy J.N., An Intro	duction to Finite Element Meth	ods ,Mo	c Graw H	III Cor	mpany, 19	84		

CBIT	Autonomous Regulation									
Department	Mechanical Engineering	Progr	amme C	ode &	Name	M.E. Th	ermal Eng	gineering		
	Sem	nester-l								
Course Code	Course Name	Hours	/ Week		Credit	Maximu	m Marks			
		L	Т	Р	С	Е	1	Total		
ME503	COMPUTER AIDED	3	1	0	4	80	20	100		
	MODELING AND									
	DESIGN									
Objective (s)	To create awareness of the	importa	ance of	variou	s modeling	g techniqu	ies applica	able to		
	engineering industry.									
							T			
1 INTRODUCTION TO CA	AD				Total	Hrs	L	9		
Criteria for selection of CAD workstations, Shigle Design Process, Design criteria, Geometric modeling, entities, 2D & 3D Primitives.										
2D & 3D Geometric Tran	sformations: Translation, Sc	aling, I	Rotation	, Refle	ection an	d Shearir	ng, conlat	enation.		
Graphics standards: GKS IGES, PDES.										
2 MODELING					Total Hrs	5				
Wire frame modeling: Curve	s: Curve representation. Anal	ytic curv	ves – lin	es, Cir	cles, Ellip	se,		9		
Conis. Synthetic curves – Co	ubic, Bezier, B-Spline, NURB	S.								
							r			
3 SURFACE MODELING					lotal	Hrs		9		
Surface Modeling: Surface e	entities, Surface Representatio	on.								
Analytic Surface – Plane Synthetic Surface-Cubic, Be	Surface, Ruled Surface, Su	rface o	f Revolu	ution,	Tabulated	Cyliner.				
4 SOLID MODELING	· · · ·				Total	Hrs		9		
Solid Modeling Techniques	: Graph Based Model, Boo	lean M	odels, I	nstanc	es, Cell	Decompo	sition & S	Spatial –		
Occupancy Enumeration, Bo	oundary Representation (B-re	p) & Co	nstructiv	e Soli	d Geomet	ry (CSĠ)				
5 ADVANCED MODELIN	G				Total	Hrs		9		
Advanced Modeling Conce	epts: Feature Based Model	ing, As	semblin	g Mo	deling, B	ehavioura	I Modelir	ng,		
Conceptual Design & Top D	own Design.									
Capabilities of Modeling &	Analysis Packages such a	s solid	works,	Unigra	aghics, Ai	nsys, Hyp	ermesh.			
Computer Aided Design of n	nechanical parts and Interfere	nce De	tection b	y Moti	on analys	is.	-			
Total hours to be taught							4	45		
Text book (s)										
1 Ibrahim Zeid, "CAD/CA	AM, Theory and Practice", Mc	Graw H	lill, 1998	3.						
2 Foley, Van Dam, Feir Wesley, 2000.	ner and Hughes, "Computer	Graphic	cs Princi	iples a	ind Practi	ce", 2 nd E	d., Addis	on —		
1 E. Micheal, "Geometric	c Modelling", John Wiley & So	ns, 199	5.							
2 Hill Jr, F.S., "Compute	r Graphics using open GL", P	earson	Educatio	on, 20)3.					

CBI	Г		Au	Autonomous Regulation									
Dep	artment	Mechanical Engineering	Progr	amme C	ode &	Name	M.E. Th	ermal Eng	ineering				
		Sem	nester-I				•						
Cou	rse Code	Course Name	Hours	s/ Week		Credit	Maximu	m Marks					
			L	Т	Р	С	Е	Ι	Total				
ME5	14	OPTIMIZATION	3	1	0	4	80	20	100				
		TECHNIQUES											
Obje	ective (s)	To create awareness of the	importa	ance of v	rarious	optimizat	ion techni	ques and	project				
		scheduling applicable to en	gineerir	ig techni	ques.								
	1 LINEAR AND TRASPORTATION PROBLEMS Total Hrs 9												
Statement of Optimization Problem Linear Programming: Simplex Method Revised Simplex Method								9					
Son	ement of Optimization P	tric Programming, and Trans	Simple	n Proble	u, rev m	ised Simp	lex metro	a,					
2 NON-LINEAR PROBLEMS 9													
Non	inear Programming. Apr	proach Convergence and Sc	aling of	Design	variable	es: Uncor	strained		•				
Opti	mization Direct Search M	Methods: Random Search, Ur	ivariate	, Simple	x Meth	nod; Indire	ct Search	Methods:					
Stee	pest Descent, Conjugat	e Gradient, Newton, Quasi Ne	ewton, I	OFP Met	hods;	,							
3	NON-LINEAR PROGRA	MMING				Total	Hrs	9	9				
Con	strained Optimization Di	rect Methods: Lagrange Multi	pliers, ł	(uhn-Tu	cker								
cond	litions, Beal's method, Ir	ndirect Method: Penalty Funct	ion and	Applica	tions								
4	DYNAMIC PROGRAMM	IING				Total	Hrs	(9				
Intro	duction to Dynamic Prog	gramming; Concept of Sub op	otimizati	on and t	he prir	ciple of o	ptimality; l	Linear and	ł				
Con	tinuous Dynamic Progra	mming with Applications; Intro	oductio	n to Integ	ger Pro	gramming	; Cutting	Plane					
Meth	nod; Branch and Bound	method; Introduction to Gene	tic Algo	rithms, p	particle	swarm o	otimizatior	1	-				
5	PROJECT SCHEDULIN	G		-		Iotal	Hrs		9				
Seq	uencing and Schedul	ing, Project Scheduling b	Y PEF	RT-CPM;	Prot	bability a	nd cost	consider	ation in				
Proj	ectscheduling; Queuing	rition for convice	i serve	er moae	eis; Q	ueues w	th combi	ned arriv	als and				
Tota	I hours to be taught	Thes for service.						4	5				
Text	hook (s)								5				
1	Rao,S.S. Engineering	"Optimization Theory and Pra	ctice",	New Age	Int. P	ub., 3rd E	d., 1996.						
2	Haug, E.J. and Arora, J	.S., "Applied Optimal Design"	, Wiley	Inter Sci	ence F	ublication	, NY, 197	9.					
Refe	rence (s)												
1	Douglas J. Willde, "Glo	bally Optimal Design". Jhon	Wilev 8	Sons.	New Yo	ork. 1978							
2	Johnson Rav C., "Opti	mum Design of Mechanical E	lement	s". John '	Wilev 8	& Sons. 1	981.						
3	S.D. Sharma, S.D. "Or	perations Research", Khanna	Publica	tions, 20	01.								
4	4 David Goldberg, "Genetic Algorithms", pearson publications, 2006.												
5	Maurice cleric, "Particl	e Swarm Optimization", ISTE	Publica	ations, 20	006								
6	Prem Kumar Gupta, "O	Operations Research" S Char	nd publi	cations.	2008								

CBIT			Auto	nomou	s Rea	Ilation			
Depa	artment	Mechanical Engineering	Progra	mme C	ode &	Name	M.E. The	ermal End	ineerina
		Sem	ester-l		0000				jiileeniig
Cour	se Code	Course Name	Hours	/ Week		Credit	Maximur	n Marks	
			L	Т	Р	С	E	1	Total
ME5	16	ENGINEERING	3	1	0	4	80	20	100
		RESEARCH							
		METHODOLOGY							
Obje	ctive (s)	To create awareness of the	importa	nce of r	esearc	h method	ology, des	ign and p	ossible
		ways of exploring data							
<u> </u>									-
1	PREREQUISITS OF RE	SEARCH				Total	Hrs		9
in en	duction: Scope of resea	arch, objective/motivation, cha	aracteris	tics and	prere	quisites o	r research	. Researd	ch needs
2	REVIEW OF LITERATU					Total	Hrs		9
Revi	ew of Literature: Role of	f review, search for related lite	erature.	online s	earch.	and web	-based sea	arch cond	ucting a
litera	ture search. Evaluating	, Organizing, and synthesizing	the lite	rature.	ouron,				aoung a
Ident	tifying and describing t	he research. Finding the research	search l	Problem	. Sou	rces of re	esearch pr	oblem.	
Crite	ria/Characteristics of a	Good research							
3 F	PLANNING FOR RESE	ARCH DESIGN				Total	Hrs		9
The	Nature and role of Data	a in Research. Linking Data a	nd Rese	earch M	ethodo	ology. Val	idity of Me	thod. Pla	nning for
Data	collection. Choosing a	Research Approach. Use o	f Quant	itative /	Qualit	ative Res	earch Des	sign. Fea	sibility of
Res	earch Design. Establis	hing Research Criteria. Jus	stificatio	n of Re	esearc	h Method	dology. R	esearch	Proposal
prep	aration. Characteristics	of a proposal. Formatting a	researc	n propo	sal. P	reparatior	of propos	sal. Impo	rtance of
	EVALOPATION OF DA					Total	Ure		0
Expl	oring the data Descript	tion and Analysis of Data R	ole of S	tatistics	for D	ata Analy	sis Funct	ions of St	tatistics
Estin	nates of. Population. P	arameters. Parametric V/s N	lon Par	ametric	metho	ods. Desc	riptive Sta	atistics. P	oints of
Cent	ral tendency, Measure	s of Variability, Measures of	relation	nship. I	nferen	tial Statis	tics-Estimation	ation, Hy	pothesis
Test	ng. Use of Statistical so	ftware.		-					
Data	Analysis: Deterministic	and random data, uncertair	ity anal	/sis, tes	sts for	significan	ce: Chi-so	quare, stu	ident's 't'
test.	Regression modeling,	direct and interaction effects.	ANOVA	A, F-test	t. Time	e Series a	nalysis, A	utocorrela	ation and
auto	regressive modeling					Tatal	11.0		•
5 I	RESEARCH REPORT	oarab rapart Style of writin	a ropol	+ Dofo	ronoor	I Otal	Hrs	Toohnio	9 ol nonor
writir	ng Format of the Res	earch report. Style of while	ig repui	I. Kele	rences		nograpny.	Technic	ai papei
Tota	hours to be taught							4	15
Text	book (s)								
1	Paul D. Leedy and Je	anne E. Ormrod. "Practical R	esearch	: Plannii	ng and	l Design",	(8th Editi	on)	
	-				-		•		
2	"A Hand Book of Edu	cation Research" - NCTE							
Ref	erence (s)								
1	Sindhu, K.S. " Method	lology of Education Research	" Sidhu						
2	Kothari. C.R. "Resear	ch Methodology, Methods & ⁻	Techniqu	le":					
3	Agarwal, Y.P. "Tests,	Measurements and Research	n methoo	ds in Be	havior	al Statistic	cal Method	ls".	
4	Box and Jenkins; "Tin	ne Series Analysis, Forecastir	ng and C	Control",	Holde	n Day, Sa	nfrancisco)	
5	Holman, J.P. "Experin	nental Methods for Engineers	", McGra	aw Hill I	nt., Ne	w York.			

CBIT			Auto	nomous	s Regu	Ilation					
Department		Mechanical Engineering	Mechanical Engineering Programme Code & Name M.E. Thermal Engineering								
		Sem	ester-l								
Course Code		Course Name	Hours/	Week		Credit	Maximur	m Marks			
			L	Т	Р	С	E	1	Total		
ME607		FLUID POWER SYSTEMS	3	1	0	4	80	20	100		
Objective (s)		To create awareness of the	importai	nce of re	esearc	h method	ology, des	ign and p	ossible		
		ways of exploring data									
1 HYDRAULIC FLUIDS Total Hrs 9											
Advantages and	Disadvanta	ages of Fluid control, Types of	Hydrau	lic Fluid	s, phys	sical, cher	nical and	thermal pr	roperties		
of hydraulic fluids, selection of hydraulic fluid, fluid flow fundamentals.											
	C FUIVIFS A	tore: Basia Types and cons	truction	e ideal	numr		tor opoly	cia Dorfa			
	ps and ivio	tors. Basic Types and cons	Information	s, iueai	pump		tor analy	sis, Penc	Innance		
Ludroulio Contr	rol Volvoc	Value configurations gonor		onalve	ic orit	ical cont	or open (contor th			
spool valve ana	lucie and F	Tapper valve analysis press	ure cont	trol valu		nde and	two stade		control		
valves flow con	ntrol valves	introduction to electro hydra	ulic val	ves	C3, 31	igie anu	wo stage	piessuie	CONTION		
3 HYDRAULIC		FI EMENTS		vco.		Total	Hrs	(9		
Hydraulic Powe	er Flements	S: Valve controlled motor va	lve con	trolled	niston	three w	av valve	controllec	niston		
pump controlled	d motor, pre	essure transients in power el	ements.		pioton	,	ay raite	00110101100	, piotoni,		
pump controlled motor, pressure transients in power elements.											
	CS	•				Total	Hrs	ę	Ð		
4 PNEUMATIC Characteristics	cs of Pneuma	atics, Applications of Pneum	natics, E	Basic P	neuma	Total atic elem	H rs ents, Stea	ady flow	a of Ideal		
4 PNEUMATIO Characteristics gases, orifice a	CS of Pneuma and nozzle	atics, Applications of Pneum calculations, capillary flow,	natics, E flow of	Basic P real ga	neuma ses, li	Total atic elem nearised	H rs ents, Stea flow equa	ady flow ations in	9 of Ideal Orifices		
4 PNEUMATIC Characteristics gases, orifice a and Nozzles.	cs of Pneuma and nozzle	atics, Applications of Pneum calculations, capillary flow,	natics, E flow of	Basic P real ga	neuma ses, li	Total atic elem nearised	Hrs ents, Stea flow equa	ady flow ations in	9 of Ideal Orifices		
4 PNEUMATIO Characteristics gases, orifice a and Nozzles. Steady state	cs of Pneuma and nozzle analysis o	atics, Applications of Pneum calculations, capillary flow, f pneumatic components:	natics, E flow of Multiple	Basic P real ga	neuma ses, li	Total atic elem nearised and volu	Hrs ents, Stea flow equa me calcu	ady flow ations in ulations,	of Ideal Orifices sensing		
4 PNEUMATIO Characteristics gases, orifice a and Nozzles. Steady state chambers, valve	CS of Pneuma and nozzle analysis o es, Single a	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators.	natics, E flow of Multiple	Basic P real ga e restric	neuma ses, li ction	Total l atic elem nearised and volu	Hrs ents, Stea flow equa me calcu	ady flow ations in ulations,	of Ideal Orifices sensing		
4 PNEUMATIC Characteristics gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT	CS of Pneuma and nozzle analysis o es, Single a FS IN ELEM	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE	natics, E flow of Multiple	Basic P real ga e restrie	neuma ses, li ction	Total atic elem nearised and volu Total	Hrs ents, Stea flow equa me calcu Hrs	ady flow ations in ulations,	of Ideal Orifices sensing		
4 PNEUMATIC Characteristics gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic	CS of Pneuma and nozzle analysis o es, Single a IS IN ELEW cs-linear p	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea	natics, E flow of Multiple MS r dynar	Basic P real ga e restric mics of	neuma ses, li ction	Total atic elem nearised and volu Total ariable vo	Hrs ents, Stea flow equa me calcu Hrs olume of	ady flow ations in ulations, gas, Pn	of Ideal Orifices sensing o eumatic		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin	CS of Pneuma and nozzle analysis o es, Single a rS IN ELEM cs-linear p es, linear o	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting acti	natics, E flow of Multiple MS r dynar uators. <i>I</i>	Basic P real ga e restric mics of Applicat	neuma ses, li ction a va ions ir	Total atic elem nearised and volu Total riable vo	Hrs ents, Stea flow equi me calcu Hrs olume of al process	ady flow ations in ulations, gas, Pn s controls	of Ideal Orifices sensing o eumatic : On-Off		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed feed	cs of Pneuma and nozzle analysis o es, Single a rs in ELEM cs-linear p les, linear o back syste	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting acturs, ms, feedback control of prop	natics, E flow of Multiple MS r dynar uators. <i>I</i> ortional	Basic P real ga restric mics of Applicat gain, d	neuma ses, li ction a va ions ir lerivati	Total atic elem nearised and volu Total ariable vo industria ve action	Hrs ents, Stea flow equi me calcu Hrs Dlume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a Pneumatic Pr	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEM cs-linear p les, linear o back syste essure Reg	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting acturs, feedback control of prop gulator.	natics, E flow of Multiple MS r dynar Jators, <i>J</i> ortional	Basic P real ga restric mics of Applicat gain, d	neuma ses, li ction a va ions ir lerivati	Total atic elem nearised and volu Total niable vo nindustria ve action	Hrs ents, Stea flow equi me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a Pneumatic feed a Pneumatic feed	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEM cs-linear p les, linear o back syste essure Reg taught	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actu ms, feedback control of prop gulator.	natics, E flow of Multiple MS r dynar Jators. <i>J</i> ortional	Basic P real ga restric mics of Applicat gain, d	neuma ses, li ction a va ions ir lerivati	Total atic elem nearised and volu Total miable vo n industria ve action	Hrs ents, Ste flow equ me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a Pneumatic feed a Pneumatic feed Text book (s) Text book (s)	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEW cs-linear p back syste essure Rec a taught	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actu ms, feedback control of prop gulator.	natics, E flow of Multiple MS r dynar Jators. <i>J</i> ortional	Basic P real ga restric mics of Applicat gain, d	neuma ses, li ction a va ions ir	Total atic elem nearised and volu Total ariable vo n industria ve action	Hrs ents, Ste flow equ me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of 5		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a Pneumatic Pr Total hours to be Text book (s) 1	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEW cs-linear pri les, linear o back syste ressure Reg taught	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actu ms, feedback control of prop gulator.	natics, E flow of Multiple MS r dynar Jators. <i>J</i> ortional	Basic P real ga restrice mics of Applicat gain, d	neuma ses, li ction a va ions ir lerivati	Total atic elem nearised and volu Total ariable vo n industria ve action	Hrs ents, Ste flow equ me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing orifices sensing orifices con-Off esign of 5		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a Pneumatic Pro Total hours to be Text book (s) 1 Herbert E. 2 W. Anders	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEM cs-linear p loss, linear o back syste essure Reg taught . Merritt, "H son, The Ar	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actur ms, feedback control of prop gulator.	natics, E flow of Multiple MS r dynar Jators. <i>J</i> ortional ohn Wil	Basic P real ga restric mics of Applicat gain, d ey & Sc ems, Wil	neuma ses, li ction a va ions ir lerivati	Total atic elem nearised and volu Total ariable vo n industria ve action 067 67.	Hrs ents, Stea flow equi me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of 5		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve state 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a a Pneumatic fred a Total hours to be Text book (s) 1 Herbert E. 2 W. Anders Reference (s) State	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEM cs-linear p les, linear o back syste essure Reg taught . Merritt, "H son, The Ar	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actums, feedback control of prop gulator. ydraulic Control Systems", J nalysis and Design of Pneuma	natics, E flow of Multiple MS r dynar Jators. <i>J</i> ortional ohn Will	Basic P real ga restric mics of Applicat gain, d ey & Sco ems, Wil	neuma ses, li ction a va ions ir lerivati	Total atic elem nearised and volu Total ariable vo n industria ve action 067 67.	Hrs ents, Stea flow equa me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of 5		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve state 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a a Pneumatic feed a Total hours to be Text book (s) 1 Herbert E. 2 W. Anders Reference (s) 1 1 A.B. Good	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEM cs-linear p back syste essure Reg taught . Merritt, "H son, The Ar	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actums, feedback control of prop gulator. ydraulic Control Systems", J nalysis and Design of Pneuma Power Systems, Macmillan,	natics, E flow of Multiple MS r dynar Jators. / ortional ohn Wil tic Syste	Basic P real ga restrice mics of Applicat gain, d ey & Sco ms, Wil	neuma ses, li ction a va ions ir lerivati ons, 19 ey, 19	Total atic elem nearised and volu Total ariable volu n industria ve action	Hrs ents, Stea flow equa me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of 5		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a Pneumatic feed a Pneumatic Pr Total hours to be Text book (s) 1 Herbert E. 2 W. Anders Reference (s) 1 1 A.B. Good 2 Anthony F	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEW cs-linear p back syste ressure Rec taught . Merritt, "H son, The Ar	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actu ms, feedback control of prop gulator. ydraulic Control Systems", J alysis and Design of Pneuma Power Systems, Macmillan, Fluid power with applications	natics, E flow of Multiple MS r dynar Jators. / ortional ohn Wil tic Syste 1976. ", Prent	Basic P real ga restrice mics of Applicat gain, d ey & Sc ems, Wil	neuma ses, li ction a va ions ir lerivati ey, 19 , 7 th E	Total atic elem nearised and volu Total ariable volu nindustria ve action 067 67.	Hrs ents, Stea flow equi- me calcu Hrs olume of al process , integral	ady flow ations in ulations, gas, Pn s controls action, D	of Ideal Orifices sensing eumatic : On-Off esign of 5		
4 PNEUMATIC Characteristics gases, orifice a gases, orifice a and Nozzles. Steady state chambers, valve 5 TRANSIENT Linear dynamic transmission lin pneumatic feed a Pneumatic Pr Total hours to be Text book (s) 1 Herbert E. 2 W. Anders Reference (s) 1 1 A.B. Good 2 Anthony B 3 Arthur Ak Group, 20 Reference	CS of Pneuma and nozzle analysis o es, Single a TS IN ELEW cs-linear p les, linear o back syste essure Reg e taught . Merritt, "H son, The Ar dwin, Fluid Esposito, "F ers, Max 0 06.	atics, Applications of Pneum calculations, capillary flow, f pneumatic components: acting actuators. IENTARY PNEMATIC SYSTE neumatic spring rate, linea lynamics in single acting actur ms, feedback control of prop gulator. ydraulic Control Systems", J halysis and Design of Pneuma Power Systems, Macmillan, Fluid power with applications Bassman, Richard Smith, "H	natics, E flow of Multiple MS r dynar Jators. <i>J</i> ortional ohn Wil tic Syste <u>1976.</u> ", Prenti Hydrauli	Basic P real ga restrice mics of Applicat gain, d ey & Sco ems, Wil ice Hall c Powe	neuma ses, li ction a va ions ir erivati ey, 19 , 7 th E er Sys	Total atic elem nearised and volu Total ariable vo n industria ve action 067 67. dition, 20 tem Ana	Hrs ents, Stea flow equa me calcu Hrs olume of al process , integral 02. 02. Iysis", Ta	ady flow ations in ulations, gas, Pn s controls action, D 4	of Ideal Orifices sensing orifices sensing orifices con-Off esign of 5 francis		

CBI	Г	Autonomous Regulation								
Depa	artment	Mechanical Engineering	Progra	amme C	ode &	Name	M.E. Th	ermal Eng	ineering	
		Sem	ester-l							
Cou	rse Code	Course Name	Hours	/ Week	_	Credit	Maximu	m Marks	I	
			L	Т	P	C	E		Total	
ME6	08	PRINCIPLES OF TURBO MACHINERY	3	1	0	4	80	20	100	
Obje	ective (s)	To create awareness of the	importa	nce of p	rinciple	es of vario	ous turbo i	machines		
	introduction of Turbomod	JRBO-MACHIES	ma dun	amias	turbin			k Nozzla	y diffucor	
Clas		anties. Second Law of Then				ite en	5501 WUI			
WOL	K. Fluid equations -	continuity, Euler's, Bernd	ouiirs e	quation	and	its app	lications.	Expansi	ion and	
com	pression processes, R	eheat Factor, Preheat Facto	r					1		
2 CENTRIFUGAL PUIMPS Total Hrs 9										
Eule	er's Equation of Energy	/ Iransfer, vane congruent f	low, inf	luence	of rela	itive circu	llation, th	ickness o	f vanes,	
num	ber of vanes on veloci	ty triangles, slip factor, Stod	lola, Sta	anitz an	d Balje	e's slip fa	ctor. Suc	tion press	sure and	
net p	positive suction head. I	Phenomena of cavitation in p	pumps.	Concep	ot of sp	pecific sp	eed, Sha	pe numbe	er. Axial,	
Rad	ial and Mixed Flow Ma	chines. Similarity laws.								
3 /	AXILA FLOW FAN								9	
Flow	through Axial flow fa	ins. Principles of Axial fan	and pro	peller.	Applic	ation of f	ans for a	ir circula	tion and	
vent	ilation. Stage pressu	re rise and work done. S	lip stre	am an	d Bla	de Eleme	ent theor	y for pro	opellers.	
Perf	ormance and characte	ristics of Axial fans.						r		
4 (CENTRIFUGAL COMPI	RESSOR							9	
Flow	through Centrifugal	compressors. Stage velocity	/ triangl	les, spe	ecific v	vork. forv	vard, radi	al and b	ackward	
swe	pt vanes. Enthalpy ent	ropy diagram, degree of rea	ction, sl	ip facto	r, effic	iency. Va	ne less a	nd vaned	diffuser	
syste	ems, volute as spiral c	asing. Surge and stall in con	npresso	rs				r		
5 3	STEAM TURBINES								9	
Axia	I turbine stages, stag	e velocity triangles, work,	efficiend	cy, blac	le loa	ding, flov	v coefficie	ent. Sing	le stage	
impu	ulse and reaction turbin	nes, degree of reaction, 50%	6 reaction	on turbi	ne sta	ge, Radia	al equilibr	ium and	Actuator	
disc	approach for design of	f turbine blades. Partial adm	ission p	roblem	s in tu	rbines. Lo	osses in t	urbo mac	hines.	
Tota	I hours to be taught							4	5	
Text	book (s)									
1	S.M. Yahya, Turbines	s, Compreessors and Fans,	Tata Mo	cgraw H	ill.					
2	Gopalakrishnan G, P	rithvi Raj D, "A treatise on T	urboma	chines"	, Scite	c Publica	tions, Ch	ennai, 20	02.	
Ref	erence (s)									
1	Sheppard, Principles	of Turbomachinery.								
2	R.K.Turton, Principles	of Turbomachinery, E & F N S	pon Pub	olishers,	Londo	n				
3	. Balajee, Designing	of Turbomachines.								

CBIT	-	Autonomous Regulation								
Depa	artment	Mechanical Engineering	Progra	amme C	ode &	Name	M.E. Th	ermal Eng	jineering	
		Sem	ester-l							
Cour	se Code	Course Name	Hours	/ Week		Credit	Maximu	m Marks		
			L	Т	Р	С	E	1	Total	
ME6	09	DESIGN OF GAS TURBINES	3	1	0	4	80	20	100	
Obje	ctive (s)	To create awareness of the methods of improvement of	importa efficienc	nce of p cy.	rinciple	es of desi	gn of gas	turbine an	nd	
1 THERMODYNAMIC ANALYSIS OF GAS TURBINE CYCLES Total Hrs 9										
Joul	e/Brayton. Open and C	Closed Cycles. Methods of in	nproving	g cycle	efficie	ncy – Inte	ercooling.	Reheatin	ig and	
Reg	eneration.									
2	DESIGN OF ROTARY COMPRESSORS Total Hrs 9									
App	ications of Turbo Con	pressors (Centrifugal and a	axial flo	w) in G	as turi	bine pow	er plant.	Euler equ	ation of	
ener	gy transfer in a turbo	omachine. Design of two s	tage ce	entrifuga	al con	npressor	with van	eless and	d vaned	
aittu	sers. Design of multi s	tage axial flow compressors.							<u> </u>	
3 0		BERS OF GAS TURBINES	deelan	for mod			o Contr		9	
tube	type of combustors.	ibers. Combustion chamber	aesign		em ga	as turbine	s. Can ty	pe, annui	arano	
4	DESIGN OF AXIAL FLO	DW TURBINES							9	
Mate appl	ching of compressor a ications. Small gas tur	nd turbine for varying load on bines for space applications.	operatio	n. Gas	turbin	e for sup	er chargi	ng and c	ryogenic	
5 1	DESIGN AND CONST	RUCTION OF GAS TURBIN	IE ROT	ORS					9	
	AND BLADES									
Blad blad	e materials. Blade atta e vibrations and balan	chment techniques. Cooling cing of rotors.	metho	ds of tu	rbine k	olades. S	imple ana	alysis of tu	urbine	
Tota	I hours to be taught							4	5	
Text	book (s)									
1	D.G.Wilson,The Des Cambridge, U.K.	ign of High efficiency Turbor	nachine	ery and	Gas T	urbines,7	he MIT F	Press,		
2	2 M.P.Boyce, Gas Turbine Engineering hand book, Gulf Publishing Co., New York.									
Ref	erence (s)									
1	E. Balje, Turbo mach	ines – A guide to Selection a	and The	ory, Joł	n Wil	ey & Son	s, New Y	ork.		
2	J.S. Rao, Rotor Dyn	amics, Wiley Eastern Publica	ation, N	ew Dell	ni.					
3	3									

CBIT			Auto	onomou	s Rea	ulation					
Depa	rtment	Mechanical Engineering	Progra	amme C	ode &	Name	M.E. Th	ermal Eng	gineering		
		Sem	ester-l						<u> </u>		
Cour	se Code	Course Name	Hours	/Week		Credit	Maximu	m Marks			
		1	L	Т	Р	С	E	1	Total		
ME6 ⁻	10	ADVANCED ENERGY SYSTEMS	3	1	0	4	80	20	100		
Obje	ctive (s)	To create awareness of the energy resources	importa	nce of tl	he prin	ciples of v	various no	n-conven	tional		
1		ing an				lotal	Hrs (fist also	10 0 0 0 0 0	9		
conc Ther	concentrating collectors. Solar power plants. Photo voltaic power systems. Application of SPV and Solar Thermal Systems.										
2	WINDENRGY					Total	Hrs		9		
Estin cons char	Estimation of wind energy potential. Horizontal and vertical axis wind turbine rotors. Aerodynamic design considerations for wind rotor blades. Wind electric generators-operation and control. Aero generators for battery charging.										
3	3 BIO MASS 9										
Bio 1 prod agric	mass energy: Sources uction. Bio mass ener- ultural residues. Introd	6 of biomass. Energy from gy conversion technologies uction of Hybrid energy syste	solid w . Use o ems.	astes. I f Bio-ga	Bioma asifier	ss for er . Bio mas	ergy pro ss power	duction. I generatio	Methane on using		
4	WASTE HEAT RECOV	ERY							9		
Prine and bed com	ciples of waste heat recuperators for was combustion (AFBC), bustion (CFBC).	recovery and co-generatio ste heat recovery. Advanta Pressurized fluidized be	on. Ana ages of d com	lysis of f fluidiz bustion	f heat zed be n (PFE	recover ed boiler 3C and	y system s. Atmos Circulatio	s. Reger spheric f on fluidiz	erators luidized zed bed		
5	CO-GENERATION POW	VER SYSTEMS							9		
Co-g boile (IGC	eneration power syste rs. Combined cycle po C) power plants. Optim	ms, Condensate and back p ower plants based on waste nization of Power plant cycle	pressur e heat efficien	e steam recover icy. Clea	n turbi y. Inte an coa	nes. Des grated g al technol	ign of wa asificatioı ogies.	ste heat n combin	recovery ed cycle		
Total	hours to be taught							4	ł5		
Text	book (s)										
1	D.A. Relay, Waste He	eat Recovery System.									
2	G.C. Drydin, The effic	cient Use of Energy.									
Refer	ence (s)										
1	J.A. Duffire and W.A.	Beckmen, Solar Energy The	ermal P	rocesse	es.						
2	A.B. Meinel, Applied	Solar Energy.									
3	V.D. Hunt, Wind Pow	er.						-			
	N.H Ravindranath and	d D O Hall, Bio Mass, Energ	ly and E	nvironn	nent, (Oxford Ur	niversity F	ress.			
	.V Jadhav, Energy and Environment, Himalaya publishing house, Mumbai.										

CBI	-		Auto	nomou	s Rea	Ilation			,		
Depa	artment	Mechanical Engineering Programme Code & Name M.E. Thermal Engineering									
		Sem	ester-I								
Cou	se Code	Course Name	Hours	Week		Credit	Maximur	m Marks			
			L	Т	Р	С	E	1	Total		
ME6	11	FUELS & COMBUSTION	3	1	0	4	80	20	100		
Obje	ctive (s)	To create awareness of the	importa	nce of w	vorking	principles	s of combu	ustion, an	d		
		familiarize the knowledge of	various	types c	of fuels						
1	CONVENTIONAL AND RESOURCES	NON-CONVENTIONAL ENE	RGY			Total	Hrs		9		
Intro	duction: General, Conv	entional energy resources, S	Solar en India	ergy, N Rocket	luclear	power, E	Energy fro	m biomas	ss, Wind		
2	SOLID FUEL-COAL	mai energy; Energy survey to	n muia,	TOCKET		Total	3, Offics, iv Hrs	ieasures.	9		
Solic	Fuels: General. Biom	ass. Peat. Lignite or Brown	n Coal.	Sub-bit	umino	us Coal	or Black	Lianite.	<i>,</i>		
Bitur	ninous Coal, Semi-anth	racite, Anthracite, Cannel coa	al and B	oghead	coal,	Natural co	oke (Jham	a)/SLV			
fuel,	Origin of coal, Compos	ition of coal, Analysis and pro	perties	of coal,	Action	of heat o	n coal, O	kidation			
Of CC	bal, Hydrogenation of co	al, Classification of coal	ana of a		al carb	onization	Briguottin	a of colid	fuele		
	efaction of solid fuels. G	eneral Coal preparation, Stor	age of c		al calb	onization,	Diquettin	y or solid	iueis,		
3						Total	Hrs		9		
Liqu	id Fuels : General, F	Petroleum, Origin of Petrol	eum, P	etroleur	n pro	duction, (Compositi	on of pe	etroleum,		
Clas	sification of petroleum, I	Nature of Indian crude's, Petro	oleum pi	ocessir	ng, İmp	ortant pet	roleum pr	oducts, P	roperties		
and	testing of petroleum an	d petroleum products, Petrol	eum ref	ning in	India,	Liquid fue	els from s	ources ot	her than		
petro	pleum, Gasification of liq	uid fuels, Storage and handlir	ng of liqu	uid fuels	5.						
4 (GASEOUS FUELS				ĻĹ	Total	Hrs		9		
Gase	eous fuels: General, Ty	bes of gaseous fuels, Natura	I gas, M	ethane	from c	coal mines	s, Produce	er gas, Wa	ater gas,		
Card	oureted water gas, Com	plete gasilication of coal, Uno	aergrour	(I PC)	Oil da	of coal, C	Cleaning	and nurifi	ace gas,		
dase	eous fuels.	ary gases, Equened periored	n yases	(LFG),	Oli ya	Silication,	Cleaning	anu punn	cation of		
5 (COMBUSTION PROCE	SS				Total	Hrs		9		
Com	bustion Process (Stoich	niometry and Thermodynamic	cs): Con	bustior	Stoic	hiometry :	General,	Example	s, Rapid		
meth	nods of combustion stoic	hiometry.						-	-		
Com	bustion Thermodynamic	cs : General Combustion Proc	ess (Kir	etics): I	Nature	of combu	stion proc	ess,	(0)(T)		
Type	es of combustion proce	esses, Mechanism of combi	ustion re	eaction,	Spon	taneous	gnition I	emperatu	re (SII),		
veio	city of flame propagation	on, Limits of Inflammability,	Structur	e of fia	ame, F	lame stal	ollity, Kine	etics of II	quia tuei		
Com	bustion, Kinelics of Solid	eneral Gas burners Oil burn	ers Coa	l hurnir	na eaui	nment					
Tota	hours to be taught		010, 000	a barrin	ig oqu	pinoin		4	5		
Text	book (s)								<u> </u>		
1	Loftness, R.L.," Energ	y hand book", New York, Var	n Nostra	nd 1998	8.						
2	Wilson, P.J. and J.H.	Wells, "Coal, Coke and Coal	Chemica	als", Ne	w Yorl	k : McGrav	w-Hill, 196	60.			
1	"Gas Engineers Hand	book", New York : Industrial F	Press, 19	966.							
2	Williams, D.A. and G.	James, "Liquid Fuels", Londo	on Perga	mon, 19	963						
3	Minkoff, G.J., and C.F	.H. Tipper, "Chemistry of Con	nbustior	Reacti	on", Lo	ndon But	terworths,	1962.			
4	Samir Sarkar, "Fuels	& Combustion", Orient Long n	nan 199	6.							

CBI	-		Auto	onomous	s Regu	ulation			
Depa	artment	Mechanical Engineering	Progra	amme Co	ode &	Name	M.E. Th	ermal Eng	ineering
		Sem	ester-l						
Cou	se Code	Course Name	Hours	Week		Credit	Maximu	m Marks	
			L	Т	Р	С	E	1	Total
ME6	12	POWER PLANT	3	1	0	4	80	20	100
		CONTROL AND							
01.1		INSTRUMENTATION		,			· .		
Obje	ctive (s)	I o create awareness of the importance of working principles of various measuring							
		Instruments and their applic	alions in	rengine	ening i	noustry			
1 0				те		Total	Hre		0
Stat	o ^e dunamia charact	IARACTERISTICS OF INSTRUMENTS TOTAL HIS 9							
indic	ating & recording elem	enslics of instruments, sen ients	SOIS, SI	gnar pr	ocess	ing a ua	la transn	lission ei	ements,
2						Total	Hrs		9
Use	of computers for dat	a acquisition & instrumenta	tion for	measu	irina t	emperati	ire, press	sure flow.	speed.
vibra	ation & noise.				5		- ,		, .,
3 I	ELECTRICAL PARAME	TERS				Total	Hrs		9
On-l	ine process instrumen	ts. Automatic process contr	ol syste	ems Rep	oreser	ntation. F	eedback	control co	oncepts.
Irar	sient & Frequency res	ponse. Types of controllers				T (1)			
4 Stok	STABILITY OF INSTRU	IMENIS	Poilor	Control	<u> </u>		Hrs Control of	turbo mo	y Johingo
Siac				Control	, Gove				achines.
	Joining of power syster	OWER STSTEWS ANALTS	olo of buc c	dmitton			nis moo mot	ricoc Do	yor flow
solu	tion Gauss-Spidel N	ewton Rankson and fast	de-co	unled l	nad f	iu impeu iow Shi	arice mai	it studios	s Static
equi	valents of power syste	m. Basic concepts of securit	v analv	sis and	state	estimatio	n.		, otatio
Tota	hours to be taught	···; - ····	. <u>j</u> j					4	5
Text	book (s)								
1	Beckwith and Buck, M	Mechanical Measurements.							
2	2 A.K.Tayal, Instruments and Mechanical Measurements, Galgotia Publication								
1	"McCloy and Martin H	I.R., The Control of Fluid Po	wer, Lo	ngman	Public	ation, 19	73.		
2	Williams, D.A. and G.	James, "Liquid Fuels", Londo	on Perga	mon, 19)63				
3	David Lindsley "Pow	ower-Plant Control and Instrumentation "IEE Control Engineering Series 585.							
4	W.Bolton "Instrument	ation and Control Systems",	1st Edi	tion Els	evier,	2004			

CBI	Г		Auto	onomou	s Reau	ulation			
Depa	artment	Mechanical Engineering	Progra	amme C	ode &	Name	M.E. Th	ermal Eng	ineering
		Sem	ester-I						0
Cou	rse Code	Course Name	Hours	/ Week		Credit	Maximu	m Marks	
			L	Т	Р	С	Е	1	Total
ME6	513	DESIGN OF PUMPS AND	3	1	0	4	80	20	100
		COMPRESSORS							
Obje	ective (s)	To create awareness of the	importa	ince of v	working	g principle	s of desig	n of rotar	y pumps
and rotary compressors .									
								1	
1	INTRODUCTION TO PL	JMPS AND COMPRESSORS				Total	Hrs		9
Cha	aracteristics of working	fluids, Fluid mechanics cond	cepts ar	nd gove	rning l	aws of flu	uid flow.		
2 DESIGN OF PUMPS Total Hrs 9									
Pum	nps – various compone	nts and their functions. Clas	sificatio	n of pui	mping	systems	 based 	on the	
appl	lications and working fl	uids. Design of pumps – dat	a requir	ed for t	he des	sign of pu	mp and c	lesign	
calc	ulations. Selection of the	ne drive – Types of drives, th	neir beh	avior ar	nd adv	antages,	Selectior	n of the pu	umps –
type	s of pumps. Selection	of piping and other compone	ents. De	velopm	ent of	a schem	atic layou	it of the p	iping
syst	em								
3 (OPERATION AND MAI	NTANANCE OF PUMPS				Total	Hrs	9	9
Ope	ration and maintenan	ce – installation of pumpin	g syste	m. Tes	sting c	of the pu	mping sy	rstems –	Various
metl	hods based on the w	orking fluid, drive and pur	np etc.	, Maint	enanc	e of the	pumps	 Predict 	tion and
corr	ection methods, Factor	s affecting the maintenance	and the	eir evalu	ation.			1	
4	ROTARY COMPRESSO	DRS				Total	Hrs		9
Rota	ary compressor system	 various components and 	their fu	nctions	. Clas	sification	of compr	essors. D	esign of
com	pressor – data and an	alysis. Characteristics of the	e comp	ressors	. Sele	ction of th	ne drive a	and comp	ressors.
Dev	elopment of the schem	atic layout of the compresso	or syster	n. .				1	
5	DESIGN OF IMPELLOF	lS				Total	Hrs		9
Des	ign of impeller, Types of	of impellers – centrifugal and	l axial. I	Design	of a di	ffuser – V	aneless a	and vane	d
diffu	ser. Types of casings,	casing design. Performance	charac	teristics	s of tur	bo comp	ressors.	1	
Tota	I hours to be taught							4	5
Text	book (s)								
1	1 S.M. Yahya, Turbines, Compressors and Fans, Tata McGraw Hill Publishing Co.								
2	Val.S. Lobanoff and F	Robert R. Ross, Centrifugal	Pumps	– Desig	ins an	d Applica	tion, Jaic	o book pı	ublishing
	00								
1	Igor I Karassik and	Iosenh P. Messina "Pump H	andhoo	k 1986					
1	Igor J. Karassik and C	Joseph P. Messina " <u>Pump H</u>	andboo rifugal	<u>k</u> 1986 and avi	al flow		and com	nressors	Oxford

CDIT		T		Auto	nomour	Dog	lation			
Department		Machanical Engi	nooring	Auto			Nomo		ormal Eng	incoring
Department		Mechanical Engli	neering	Progra	imme C	ode &	Name	W.E. IN	ermai Eng	Jineering
			Sem	ester-I	/ \			N4 ·		
Course Code		Course Name		Hours	vveek	_	Credit	Maximu	m Marks	T =
				L		Р	С	E		Iotal
ME614		NUMERICAL ME	ETHODS	3	1	0	4	80	20	100
Objective (s)		To create aware	eness of the	importa	ince of v	vorking	g principle	es of nume	erical anal	ysis and
		its applications in	n engineerir	ng.						
1 LINEAR SETS OF EQUATIONS Total Hrs 9										
Gauss Elimina	tion, LV De	composition, Matri	x Inversion	, Scala	r Tridiag	jonal I	Matrix, Th	nomas Alg	gorithm, C	Jauss
Seidel Method	, Secant Me	thod								
2 NON-LINE	AR SETS O	F EQUATIONS					Total	Hrs		9
Solving nonlin	ear sets of e	quations Minimiza	ation of fund	ction, N	ewton's	Meth	od, Quas	i-Newton	Method,	
Steepest Desc	ent Method	, Eigen Values & V	/ectors.							
3 INTERPOL	ATION						Total	Hrs		9
Interpolation 8	Polynomia	Approximation Le	ast Square	es Meth	od, Lag	range	Interpola	tion, Her	mite	
Interpolation.	Jubic Spline	Interpolation. Che	ebeshev Po	olvnomi	als & Se	eries		,		
4 NUMERIC	L DIFFERE	NTIATION					Total	Hrs		9
Numerical Diff	erentiation {	Integration Nume	erical Differ	entiatio	n, Rich	ardsor	n's Extrap	olation, I	Definite &	
Indefinite Integ	rals, Simps	on's Rule, Trapezo	oid Rule, G	aussiar	n Quadr	ature				
5 ORDINAR	/ DIFFERNE	NTIAL EQUATION	NS				Total	Hrs		9
First and High	er Order Ta	vlor Series. First c	order Runa	e-kutta	Method	. Four	th order I	Runae-ku	tta Metho	d. Stiff
Equations, Err	ors. Conver	dence Criteria	0					0		,
Total hours to l	e taught								4	15
Text book (s)	<u> </u>									
1 Cheney E	. Ward, Kinc	aid D.R., Numerical	I Methods a	nd Appli	cations,	2008,	Cengage	e Learning	g	
2 Gerald C	F., Wheatle	/ P.O., Applied Nun	nerical Ana	lysis, 7 ^m	Ed, Pea	arson	Educatio	n.		
I										
1 Burden	1 Burden R.L., Faires J.D., Numerical Analysis: Theory and Applications, 2005, Cengage Learning,									
2 Chapra S	.C., Canale	R.P., Numerical Me	ethods for E	nginee	rs, 4 th E	d,Tata	McGraw	Hill.	J	
3 Mathews	J.H., Fink K.	D., Numerical Meth	ods usina N	/A TLA	3, 4th Ec	l, Pea	rson Edu	cation		
4 6 Press	6. Press W.H., Taukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in C++, 2 nd Ed. Cambridge									
Universit	v Press	,,ing	,am	,	.,				., ••	

CBIT	Autonomous Regulation								
Department	Mechanical Engineering	Progra	Imme C	ode &	Name	M.E. Th	ermal Eng	ineering	
	Sem	ester-l							
Course Code	Course Name	Hours/	'Week		Credit	Maximu	m Marks		
		L	Т	Р	С	E	1	Total	
ME615	ENVIRONMENTAL	3	1	0	4	80	20	100	
	ENGINEERING AND								
	POLLUTION CONTROL								
Objective (s)	To create awareness of the importance of the harmful effects of different typ								
pollution and its effects on human beings and environment									
1 AIR POLLUTION									
Sources and Effect - Acid Rain - Air Sampling and Measurement - Analysis of Air Pollutants - Air Pollution									
2 SOLID WASTE MANAGEMENT									
2 SOLID WASTE MANAGEMENT									
Process and Equipments	for Energy Recovery from Mu	inicinal	Solid W	lasta :	and Indus	trial Solic	13p03ai — 1 Wasta		
3 WATER POLI LITION	tor Energy Recovery non-me	moipai					i wasic		
Sources and Classification	n of Water Pollutants - Chara	cteristic	s - Wa	ste W	ater Sam	oling Ana	lvsis - Wa	aste	
Water Treatment - Monito	ring compliance with Standar	ds - Tre	atment	Utiliz	ation and	l Disposa	l of Sluda	e	
4 OTHER TYPES OF PC	DLLUTION							-	
Noise Pollution and its imp	pact - Oil Pollution - Pesticide	s - Rad	ioactivit	y Poll	ution Prev	vention a	nd Contro)	
5 POLLUTION FROM	HERMAL POWER PLANTS	AND							
CONTROL METHOD	S:								
Instrumentation for pollution	on control - Water Pollution fr	om Tan	neries a	and ot	her Indus	tries and	their cont	rol	
Total hours to be taught							4	5	
Text book (s)									
G.Masters" Introduct	tion to Environmental Enginee	ering ar	d Scier	ice, P	rentice -H	lall 1998			
S.Peavy, D.R. Rowe	e. G.Tchobanoglous "Environr	nental F	Enginee	rina"	- McGraw	/- Hill			
Book Company,N	ewYork.1985.								
References									
H.Ludwig, W.Evans		echnol	ogy in L	vevelo	ping Cou	ntries, 19	191		
Environmental Cons Manilla 1991	iderations in Energy Develop	ment, A	isian De	evelop	ment Bar	ık (ADB),			

CBIT	-	Autonomous Regulation								
Depa	artment	Mechanical Engineering	Progra	amme C	ode &	Name	M.E. Th	ermal Eng	ineering	
		Sem	ester-l							
Cour	se Code	Course Name	Hours	/ Week		Credit	Maximu	m Marks		
			L	Т	Р	С	Е		Total	
ME6	16	REFRIGERATION	3	1	0	4	80	20	100	
		MACHINERY &								
		COMPONENTS								
Obje	ctive (s)	To create awareness of the	e importa	ince of t	he refi	rigeration	and its ap	plication i	n daily	
		today life and design of vari	ous com	ponents	s of ref	rigerator.				
								1		
1	REFRIGERANT COM	PRESSORS								
Herr	netic compressors - R	eciprocating, Rotary, Scroll	Compr	essors,	Oper	n type co	mpresso	s- Recip	ocating,	
Cent	Centrifugal, Screw Compressors. Semi hermetic compressors – Construction, working and Energy Efficiency									
aspe	ects. Applications of ea	ch type.			<u> </u>			1		
2 1	2 DESIGN OF CONDENSERS									
: Es	: Estimation of heat transfer coefficient, Fouling factor, Friction factor. Design procedures, Wilson plots,									
Desi	Designing different types of condensers, BIS Standards, Optimization studies.									
3	DESIGN OF EVAPOR	ATORS								
: Diff	erent types of evapora	ators, Design procedure, Sel	lection p	procedu	re, Ih	ermal Sti	ess calcu	ilations, n	natching	
Of CC	omponents, Design of e	evaporative condensers.						1		
4	REFRIGERATION SYS	STEM COMPONENTS				<u></u>	0.1		<u> </u>	
Evap	porators and condense	ers - Different types, capaci	ity conti	ol, circi	utry, (Oil return	, Oil sepa	arators -	Different	
type	s Refrigerant driers s	strainers, Receivers, Accun	nulators	, Low	pressi	ure recei	vers, Air	washers	s, Spray	
pond	IS.							1		
5	STSTEM ACCESSUR	IES AND CONTROLS			- 11		01	P_1	and the La	
Refr	igerant Pumps, Cooli	ng Tower rans, Compresso	of IVIOto	r prote	ction	devices,	Oll equa	uizing in Teetine		
evap	litionara Defrigeratora	Visionalera Caldragma C	alorimot	ethous	and	their im	Slications	-resung	O AI	
Toto	hours to be tought	, visicoolers, colu rooms, ca	aionnei	nc lesis	5.				5	
Tota								4	5	
1	Chlumsky "Reciproca	ting & Rotary compressors"		hlichare	for Te	chnical lit	eraure 10	065		
-							craure, r			
2	Hains, J.B, "Automatic	Control of Heating & Aircond	itioning"	Mc Gra	w Hill,	1981.				
Ref	References									
1	Althose, A.D. & Turnqu	uist, C.H. "Modern Refrigeration	on and A	ir condi	tioning	g" Good H	eart -Wilc	ox Co. Inc	., 1985.	
2	Recent release of BIS	Code for relevant testing prac	ctice.							
3	ASHRAE Hand book:	Equipments, 1998								
4	Cooper & Williams, B.	Commercial, Industrial, Institu	utional F	lefrigera	tion, E	Design, Ins	stallation			
	and Trouble Shooting " Eagle Wood Cliffs (NT) Prentice Hall, 1989.									

CBIT	-	Autonomous Regulation							
Depa	artment	Mechanical Engineering Programme Code & Name M.E. Thermal Engineering							
		Sem	ester-l						
Cour	se Code	Course Name	Hours	/ Week		Credit	Maximu	m Marks	
			L	Т	Р	С	E	Ι	Total
ME6	17	ENERGY MANAGEMENT	3	1	0	4	80	20	100
Obje	ctive (s)	To create awareness of the	importa	ince of t	he ene	ergy auditi	ing and de	etermination	on of
		evaluation methods of engin	eering p	projects	•				
L									
1	PRINCIPLES OF ENER				. 1			1	
Man	agerial Organization -	Functional Areas for I. Manu	Itacturir	ng Indus	stry	II. Proce	ess Indus	try	111.
Com	imerce IV. Gove	Froment. Role of Energy	Manag	er in e	eacn	of these	organiz	ations. I	nitiating,
Orga	ANISING AND MANAGING I	Energy Management Progra	ms						
2	Enorgy Audit: F	ofinition and Concepts T	vnoc o	f Enor	ου Λιι	dita D	ocio En		oonto
Pos	Ellergy Audit. L	Studios Data Cathoring	ypes u Apoly		yy Au Shniqu	ans - b	DASIC EIR	ergy Cor	icepis –
Eno	ray Conservation: Tec	bologies for Epergy Conse	- Analy		n for i	Concorva	tion of F	norav ma	toriale -
ener	av flow networks – c	ritical assessment of energy	N LISAN	, Dosig	mulati	on of oh	iectives a	and cons	traints -
svnt	hesis of alternative opt	ions and technical analysis	of option	ns - pro	cess i	ntegratio	n		trainto
3 1	ECONOMIC ANALYSIS					integratio			
Ecor	nomic Analysis: Scope	. Characterization of an Inv	estmen	t Proiec	t – Tv	pes of D	eprecicat	ion – Tin	ne Value
of m	onev – budget conside	rations. Risk Analysis.		,	,		-		
4 I	METHODS OF EVALUA	ATION OF PROJECTS							
Meth	nods of Evaluation of F	Projects : Payback – Annual	ised Co	sts – In	vesto	r's Rate o	of return -	- Present	worth –
Inter	nal Rate of Return - F	Pros and Cons of the comm	on met	hods of	analy	sis – rep	lacement	analysis	. Energy
Con	sultant: Need of Energ	<u>y Consultant – Consultant S</u>	election	Criteria	a. [`]	-		-	
5 /	ALTERNATIVE ENERG	Y SOURCES							
Alter	native Energy Source	s : Solar Energy – Types of	device	s for So	olar Ei	nergy Col	llection –	Thermal	Storage
Syst	em – Control Systems	-Wind Energy – Availability -	– Wind	Devices	s – Wii	nd Chara	cteristics	 Perforr 	nance of
Turb	ines and systems.							1	
Tota	I hours to be taught							4	15
Text	book (s)		h						
1	W.C. Turner "Energy	Management Hand book" 5	" editio	n, the F	air Mo	ount Pres	S		
2	W.R.Murphy and G.M	lc Kay "Energy Managemen	t", Butte	erworth	Public	ations			
Ref	erences								
1	C.B.Smith "Energy M	anagement Principles" Perg	amon F	ress					
2	Stephen W.Fardo, Di	le, R.Patric, "Energy conserv	vation C	Guide Bo	ook" F	air Moun	t Press		
3	Frank Krieth, D.Yogi	Goswamy "Energy manager	nent & d	conserv	ation I	hand boo	k" CRC P	ress 200	8

CBIT	Autonomous Regulation										
Department	Mechanical Engineering	Mechanical Engineering Programme Code & Name M.E. Thermal Engineering									
	Sem	nester-l						,			
Course Code	Course Name	Hours	Week		Credit	Maximu	m Marks				
		L	Т	Р	С	E	1	Total			
ME618	CONVECTIVE HEAT TRANSFER	3	1	0	4	80	20	100			
Objective (s)	To create the awareness o and its applications in engin	f the imp eering a	ortance long wit	e of prir th solu	nciples of tion	heat trans	sfer by cor	nvection			
	DNVECTIVE HEAT TRANSF	ER									
 Forced, free & combined control to convection – Physical Continuity, Navier-Strokes turbulent convective heat integral equations. 2 FORCED CONVECTION External Laminar Forced Convections – Numerical solutions – Numerical solutions for bound flat plate. Internal Laminar Flows: Fishapes – Pipe flow & plan developing velocity & temp flow – Thermally developing 3 NATURAL CONVECTION Boussineq approximation laminar flows – Numerical channel across a rectangular 	onvection – convective heat interpretation of dimension equation & energy equat transfer – Boundary layer N Convection: Similarity soluti tions – Viscous dissipation e idary layer flows – Integral dary layer flows – Integral dully developed laminar flow be duct flow with developin berature fields. Internal Tur g pipe & plane duct flow. N – Governing equations – S I solution of boundary laye ar enclosure – Horizontal en	transfe less nu ion for equation on for f effects o equation y in pipe g tempe bulent F imilarity er equa	r coeffic mbers. steady as for la low ove n flow o solutio solutio solutio solutio a solutio a solutio a solutio - Bou tions. F - Turb	cient – Equa state amina er an i over a ons – field – Analog ndary Free Coulent	Applicat flows – flows – r, turbule sotherma flat plate Effects of & ducts - Pipe flo y solution layer equipation	ion of dim Convectiv similarity nt flows al plate – . External f dissipati with othe ws & pla ns for full uations for e flows t ponvection	ensional 'e Heat ' – Equa – Bounda integral I Turbuler on on flo er cross	analysis Transfer: tions for ary layer equation at Flows: w over a sectional flow with bed pipe			
4 COMBINED CONVECT	ION										
Governing parameters & e convection over a horizont flows – internal flows - internal plane channel & in a horizo 5 HEAT TRANSFER THR	quations – laminar boundar al plate – correlations for m ernal mixed convective flow ontal duct. OUGH POROUS MEDIA	y layer t iixed co /s – Ful	low ove nvection ly deve	er an i n – ef loped	sotherma fect of bo mixed co	al vertical bundary fo prvective	plate – c prces on f flow in a	ombined turbulent a vertical			
Area weighted velocity – convection – Fully develop horizontal porous layers.	Area weighted velocity – Darcy flow model – energy equation – boundary layer solutions for 2-D forced convection – Fully developed duct flow – Natural convection in porous media – filled enclosures – stability of horizontal porous layers.										
Total hours to be taught							4	15			
Text book (s)											
1 Patrick H. Oosthuiger	n & David Naylor "Introduction	on to Co	nvectiv	re Hea	t Transfe	r Analysis	s" (TMH)				
2 Kays & Crawford "Co	nvective Heat & Mass Trans	sfer" TM	H, 2000	0							
References											
1 Oosthigen, "Convecti	ve Heat and Mass Transfer	McGra	whill, 19	998 v 109	1						
2 Adrian Bejan "Convection Heat Transfer", 2nd Edition John Wiley, 1984											

CBIT	Autonomous Regulation							
Department	Mechanical Engineering	Programme Code & Name M.E.			M.E. The	V.E. Thermal Engineering		
Semester-I								
Course Code	Course Name	Hours	/ Week		Credit	Maximur	m Marks	
	1	L	Т	Р	С	E		Total
ME619	THERMAL AND	3	1	0	4	80	20	100
	NUCLEAR POWER							
	PLANTS							
Objective (s)	To create the awareness of	f working	n of ther	mal ar	d nuclear	nower nl	ante along	with
Objective (3)								
1 STEAM POWER PLANTS								
Sources of Energy, types	of Power Plants, Direct Ener	gy Con	version	Syste	m, Energ	y Sources	s in India.	Recent
developments in Power G	eneration. Combustion of C	oal, Vol	umetric	Ánaly	sis, Grav	vimetric A	nalysis, F	lue gas
Analysis.				,				Ũ
Steam Power Plants: Intro	oduction – General Layout o	of Stear	n Powe	r Plar	nt, Moder	n Coal-fir	ed Stean	n Power
Plants, Power Plant cycles	, Fuel handling, Combustion	Equipn	nent, As	sh han	dling, Du	st Collect	ors.	
Steam Generators: Type	s, Accessories, Feed wate	r heate	ers, Pei	rforma	nce of E	Boilers, V	Vater Tre	eatment,
Cooling Towers, Steam Tu	Irbines, Compounding of Tur	bines, S	Steam C	Conde	nsers, Jet	t & Surfac	e Conde	nsers.
2 GAS TURBINE POWR	PLANTS							
Cogeneration, Combined cycle Power Plants, Analysis, Waste-Heat Recovery, IGCC Power Plants, Fluidized								
Bed Combustion – Advantages & Disadvantages.								
3 NUCLEAR POWR PLANTS								
Nuclear Physics, Nuclear Reactors, Classification – Types of Reactors, Site Selection, Methods of enriching								
Uranium, Applications of N	luclear Power Plants.	D	• • • • • • •					Dist
Nuclear Power Plants Satety: By-Products of Nuclear Power Generation, Economics of Nuclear Power Plants,								
NUCLEAR POWER PLANTS IN INDIA, FUTURE OF NUCLEAR POWER.								
4 ECUNUMICS OF FOWER GENERATION								
Economics of Power Generation: Factors affecting the economics, Load Factor, Utilization factor, Performance								
for Optimum Loading Specific Economic energy problems								
5 POWER PLANT INSTR								
Classification Pressure measurement instruments Temperature measurement and Flow measurement Analysis								
of Combustion gases Pollution – Types Methods to Control								
Total hours to be taught						4	5	
Text book (s)							-	
1 EL- Wakil, M.M., "Power Plant Technology " Mc Graw Hill, New York, 1985.								
2 Weis Man, J.and Eckert, R, "Modern Power Plant Engineering", PHI, New Delhi, 1983								
References								
1 Arora and Domkundwar, "A course in Power Plant Engineering", Dhanpat Rai & sons 2002.								
2 P.K. Nag, "Power Pl	ant Engineering," TMH, 2003	3	Ŭ		•			
P.C.Sharma, "Powe	P.C.Sharma, "Power Plant Engineering" Kotaria Publications. 2007							

CBIT	Autonomous Regulation							
Department	Mechanical Engineering	Programme Code & Name				M.E. Thermal Engineering		
Semester-I								
Course Code	Course Name	Hours/Week Credit			Credit	Maximum Marks		
		L	Т	Р	С	E		Total
ME630	THEDMAL EVETENS	3	1	0	4	50	25	100
	LABORATORT							
Objective (s) To demonstrate basic knowledge by determining various para					arameters	and cond	lucting	
	experiments using the principles of thermal engineering.							
1. Performance Eva	luation on single cylinder 4	4-stroke	e SI En	gine	with alte	rnate fue	ls with c	omputer
interfacing.								
2. Performance Evaluation on single cylinder 4 stroke CI Engine with alternate fuels with computer							omputer	
interfacing.								
2 Determination of heat transfer coefficient in Film wise and Drep wise conderaction								
3. Determination of neat transfer coefficient in Film wise and Drop wise condensation								
4 Cross flow Heat Exchanger								
5. Heat Pipe Demonstration								
6. Performance text on Axial flow compressor.								
7. Performance test on solar collector								
8. Determination of coefficient of thermal expansion of Solids, Liquids and Gases.								
0 Determination of thermal connects, of Solida								
10 Determination of isentropic coefficient of air by Clement-Desormes method								
11. Measure of enthalpy of fusion and solidification								
12. Measurement of Temperature Distribution in the interior and external Surface of an electric water								
heater with thermometers and thermo-camera								

CBIT	Autonomous Regulation								
Department	Mechanical Engineering	Programme Code & Name M.E. Thermal Engineering						ineering	
Semester-I									
Course Code	Course Name Hours/ Week Cred			Credit	Maximum Marks				
ME631		L	Т	Р	С	E	1	Total	
	CFD LABORATORY	3	1	0	4	80	20	100	
Objective (s)	To demonstrate basic know application to mechanical en	To demonstrate basic knowledge of governing equations, pertaining to CFD with application to mechanical engineering practice							
1. Introduction to CFD – Pre Processor, Solver, Post Processor									
2. Ansys Work bench – Modelling tools									
3. Ansys Work Bench – Grid Generation									
4. Ansys CFX pre – Pro	 Ansys CFX pre – Properties of fluids, Boundary Conditions 								
	· · · · · · · · · · · · · · · · · · ·								
5. Ansys Solver, Post processor									
6. Exercise 1 : Flow through a Nozzle – Modeling, Grid generation									
7. Exercise 1 : Flow through a Nozzle – Pre, Solver, Post Processor									
8. Exercise 2 : Static Mixer – Modeling, Grid generation									
9. Exercise 2 : Static Mixer – Pre, Solver, Post Processor									
10. Exercise 3 : Flow Mixing in a pipe bend – Modeling, Grid generation									
11. Exercise 3 : Flow Mixing in a pipe bend - Pre, Solver, Post Processor									
40. Europie 4. Annukarania analysis annu hada Madalian Orid annuntian									
12. Exercise 4 : Aerodynamic analysis over a body – Modeling, Grid generation									
13. Exercise 5 : Cascade Analysis – Modeling, Grid generation									
14 Exercise 5 Cascade Analysis - Pre. Solver. Post Processor									